10 research outputs found

    Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans

    Get PDF
    Hygroscopic properties of atmospheric particles were studied in the marine tropospheric boundary layer over the Atlantic and Indian Oceans during two consecutive field studies: the Aerosols99 cruise (Atlantic Ocean) from 15 January to 20 February 1999, and the INDOEX cruise (Indian Ocean Experiment) from 23 February to 30 March 1999. The hygroscopic properties were compared to optical and chemical properties, such as absorption, chemical inorganic composition, and mass concentration of organic and elemental carbon, to identify the influence of these parameters on hygroscopicity. During the two field studies, four types of aerosol-sampling instruments were used on board the NOAA (National Oceanic and Atmospheric Administration) Research Vessel Ronald H. Brown: Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA), seven-stage cascade impactor, two-stage cascade impactor, and Particle Soot Absorption Photometer (PSAP). The HTDMA was used to determine the hygroscopic properties of atmospheric particles at initial dry sizes (Dp) of 50, 150, and 250 nm and at relative humidities (RH) of 30, 55, 75, and 90%. Simultaneously, a seven-stage cascade impactor of which 3 stages were in the sub-mm size range was used to determine the molar composition of the major inorganic ions such as ammonium and sulfate ions. A two-stage cascade impactor (1 in the sub-mm size range, 1 in the sup-mm size range) was used to determine the mass concentration of organic and elemental carbon. The PSAP was used (at a wavelength of 565 nm) to measure the light absorption coefficient of the aerosol. During the two field studies, air masses of several different origins passed the ship's cruise path. The occurrence of different air masses was classified into special time periods signifying the origin of the observed aerosol. All time periods showed a group of particles with high hygroscopic growth. The measured average hygroscopic growth factors defined by the ratio of dry and wet particle diameter at 90% RH ranged from 1.6 to 2.0, depending on the dry particle size and on the type of air mass. Particles with low hygroscopic growth occurred only when continentally influenced air masses arrived at the ship's position. Distinctions in hygroscopic growth of particles of different air masses were more significant for small relative humidities (30% or 55% RH). High concentrations of elemental carbon corresponded with high light absorption coefficients and with the occurrence of less-hygroscopic and nearly hydrophobic particle fractions in the hygroscopic growth distributions. A key finding is that clean marine air masses that had no land contact for five to six days could clearly be distinguished from polluted air masses that had passed over a continent several days before reaching the ship

    Speciation of Organic Aerosols in the Tropical Mid-Pacific and their Relationship to Light Scattering

    Get PDF
    Journal of Atmospheric Sciences, Vol. 61, 2544-2558.Although the importance of the aerosol contribution to the global radiative budget has been recognized, the forcings of aerosols in general, and specifically the role of the organic component in these forcings, still contain large uncertainties. In an attempt to better understand the relationship between the background forcings of aerosols and their chemical speciation, marine air samples were collected off the windward coast of Oahu, Hawaii, during the Rough Evaporation Duct project (RED) using filters mounted on both the Twin Otter aircraft and the Floating Instrument Platform (FLIP) research platform. Laboratory analysis revealed a total of 17 species, including 4 carboxylic acids and 2 carbohydrates that accounted for 74% 6 20% of the mass gain observed on the shipboard filters, suggesting a possible significant unresolved organic component. The results were correlated with in situ measurements of particle light scattering (ssp) at 550 nm and with aerosol hygroscopicities. Principal component analysis revealed a small but ubiquitous pollution component affecting the ssp and aerosol hygroscopicity of the remote marine air. The Princeton Organic-Electrolyte Model (POEM) was used to predict the growth factor of the aerosols based upon the chemical composition. This output, coupled with measured aerosol size distributions, was used to attempt to reproduce the observed ssp. It was found that while the POEM model was able to reproduce the expected trends when the organic component of the aerosol was varied, due to large uncertainties especially in the aerosol sizing measurements, the ssp predicted by the POEM model was consistently higher than observed
    corecore