76 research outputs found

    Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as <it>Arabidopsis </it>and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants.</p> <p>Results</p> <p>In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (<it>Citrus trifoliata</it>) which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from <it>C. trifoliata </it>flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in <it>C. trifoliata</it>.</p> <p>Conclusion</p> <p>Deep sequencing of short RNAs from <it>C. trifoliata </it>flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in <it>C. trifoliata</it>. These results show that regulatory miRNAs exist in agronomically important trifoliate orange and may play an important role in citrus growth, development, and response to disease.</p

    Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2

    Get PDF
    BACKGROUND: TaGW2-6A, cloned in earlier research, strongly influences wheat grain width and TKW. Here, we mainly analyzed haplotypes of TaGW2-6B and their effects on TKW and interaction with haplotypes at TaGW2-6A. RESULTS: About 2.9Ā kb of the promoter sequences of TaGW2-6B and TaGW2-6D were cloned in 34 bread wheat cultivars. Eleven SNPs were detected in the promoter region of TaGW2-6B, forming 4 haplotypes, but no divergence was detected in the TaGW2-6D promoter or coding region. Three molecular markers including CAPS, dCAPS and ACAS, were developed to distinguish the TaGW2-6B haplotypes. Haplotype association analysis indicated that TaGW2-6B has a stronger influence than TaGW2-6A on TKW, and Hap-6B-1 was a favored haplotype increasing grain width and weight that had undergone strong positive selection in global wheat breeding. However, clear geographic distribution differences for TaGW2-6A haplotypes were found; Hap-6A-A was favored in Chinese, Australian and Russian cultivars, whereas Hap-6A-G was preferred in European, American and CIMMYT cultivars. This difference might be caused by a flowering and maturity time difference between the two haplotypes. Hap-6A-A is the earlier type. Haplotype interaction analysis between TaGW2-6A and TaGW2-6B showed additive effects between the favored haplotypes. Hap-6A-A/Hap-6B-1 was the best combination to increase TKW. Relative expression analysis of the three TaGW2 homoeologous genes in 22 cultivars revealed that TaGW2-6A underwent the highest expression. TaGW2-6D was the least expressed during grain development and TaGW2-6B was intermediate. Diversity of the three genes was negatively correlated with their effect on TKW. CONCLUSIONS: Genetic effects, expression patterns and historic changes of haplotypes at three homoeologous genes of TaGW2 influencing yield were dissected in wheat cultivars. Strong and constant selection to favored haplotypes has been found in global wheat breeding during the past century. This research also provides a valuable case for understanding interaction of genes that control complex traits in polyploid species

    Development of a highly efficient, repetitive system of organogenesis in soybean (Glycine max (L.) Merr).

    Get PDF
    A highly efficient, repetitive system of organogenesis was developed in soybean. Seeds of soybean cv. White hilum pretreated with TDZ formed multiple bud tissue(s) (MBT) at the cotyledonary nodes. MBT initiation occurred only if the axillary buds were not removed from the cotyledonary node. The best MBT formation was achieved by pretreating the seeds for 1 week on medium supplemented with 0.1 mg/l TDZ, followed by culture of the cotyledonary node on medium supplemented with 0.5 mg/l BA for 4 weeks. Culture of the MBT on medium supplemented with 0.1 mg/l TDZ resulted in the proliferation of MBT. MBT was maintained in this way for 12 months. Three hundred thirty six shoots were obtained when 1 g of MBT was subcultured on medium supplemented with 0.5 mg/l BA. Plants were rooted on medium without growth regulators. The regenerated plants grew normally in the greenhouse. Unfortunately, they did not set seeds because of the long-day conditions during growth. This system was successfully applied in three other genotype

    A jacalin-related lectin-like gene in wheat is a component of the plant defence system

    Get PDF
    Jacalin-related lectins (JRLs) are a subgroup of proteins with one or more jacalin-like lectin domains. Although JRLs are often associated with biotic or abiotic stimuli, their biological functions in plants, as well as their relationships to plant disease resistance, are poorly understood. A mannose-specific JRL (mJRL)-like gene (TaJRLL1) that is mainly expressed in stem and spike and encodes a protein with two jacalin-like lectin domains was identified in wheat. Pathogen infection and phytohormone treatments induced its expression; while application of the salicylic acid (SA) biosynthesis inhibitor paclobutrazol and the jasmonic acid (JA) biosynthesis inhibitor diethyldithiocarbamic acid, respectively, substantially inhibited its expression. Attenuating TaJRLL1 through virus-induced gene silencing increased susceptibility to the facultative fungal pathogen Fusarium graminearum and the biotrophic fungal pathogen Blumeria graminis. Arabidopsis thaliana transformed with TaJRLL1 displayed increased resistance to F. graminearum and Botrytis cinerea. JA and SA levels in transgenic Arabidopsis increased significantly. A loss or increase of disease resistance due to an alteration in TaJRLL1 function was correlated with attenuation or enhancement of the SA- and JA-dependent defence signalling pathways. These results suggest that TaJRLL1 could be a component of the SA- and JA-dependent defence signalling pathways

    MiR-RACE, a New Efficient Approach to Determine the Precise Sequences of Computationally Identified Trifoliate Orange (Poncirus trifoliata) MicroRNAs

    Get PDF
    BACKGROUND: Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-level precision. To our knowledge, there haven't been reports about comprehensive strategies determining the precise sequences, especially two termini, of these miRNAs. METHODS: In this study, we report an efficient method to determine the precise sequences of computationally predicted microRNAs (miRNAs) that combines miRNA-enriched library preparation, two specific 5' and 3' miRNA RACE (miR-RACE) PCR reactions, and sequence-directed cloning, in which the most challenging step is the two specific gene specific primers designed for the two RACE reactions. miRNA-mediated mRNA cleavage by RLM-5' RACE and sequencing were carried out to validate the miRNAs detected. Real-time PCR was used to analyze the expression of each miRNA. RESULTS: The efficiency of this newly developed method was validated using nine trifoliate orange (Poncirus trifoliata) miRNAs predicted computationally. The miRNAs computationally identified were validated by miR-RACE and sequencing. Quantitative analysis showed that they have variable expression. Eight target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. CONCLUSION: The efficient and powerful approach developed herein can be successfully used to validate the sequences of miRNAs, especially the termini, which depict the complete miRNA sequence in the computationally predicted precursor

    Pleiotropic effects of the wheat domestication gene Q on yield and grain morphology

    Get PDF
    Transformation from q to Q during wheat domestication functioned outside the boundary of threshability to increase yield, grains māˆ’2, grain weight and roundness, but to reduce grains per spike/spikelet. Mutation of the Q gene, well-known affecting wheat spike structure, represents a key domestication step in the formation of todayā€™s free-threshing, economically important wheats. In a previous study, multiple yield components and spike characteristics were associated with the Q gene interval in the bread wheat ā€˜Fornoā€™ Ɨ European spelt ā€˜Oberkulmerā€™ recombinant inbred line population. Here, we reported that this interval was also associated with grain yield, grains māˆ’2, grain morphology, and spike dry weight at anthesis. To clarify the roles of Q in agronomic trait performance, a functional marker for the Q gene was developed. Analysis of allelic effects showed that the bread wheat Q allele conferred free-threshing habit, soft glumes, and short and compact spikes compared with q. In addition, the Q allele contributed to higher grain yield, more grains māˆ’2, and higher thousand grain weight, whereas q contributed to more grains per spike/spikelet likely resulting from increased preanthesis spike growth. For grain morphology, the Q allele was associated with reduced ratio of grain length to height, indicating a rounder grain. These results are supported by analysis of four Q mutant lines in the Chinese Spring background. Therefore, the transition from q to Q during wheat domestication had profound effects on grain yield and grain shape evolution as well, being a consequence of pleiotropy

    Research Status, Problems and Direction of Soil Organic Carbon in Zoige Peat Wetland

    No full text
    Peatlands, as a special type of wetland, occupy only 3% of the Earthā€™s surface, but bear about one-third of the worldā€™s soil carbon storage and play an important role in the global carbon cycle. The Zoige Wetland is located on the eastern edge of the Qinghai-Tibet Plateau, and its peat reserves are up to 1.9 billion tons, accounting for more than 40% of the countryā€™s peat resources, which is an important support for China to achieve the ā€œdouble carbonā€ goal. This paper reviews the research status and storage estimation of soil organic carbon in Zoige Wetland. The statistical results show that there is a large difference in the estimation of carbon storage in the peatland of Zoige (0.43-1.42Ā Pg). The reasons are mainly related to marked differences in values reported for soil densities, organic carbon levels, and accumulation rates. There are still great uncertainties in the estimation of wetland carbon stocks, and future studies should focus on reducing soil carbon sink uncertainties, climate change, the impact of permafrost melting on carbon sink functions, the impact of degraded ecosystem restoration and sink enhancement pathways, and other greenhouse gas functions. In order to accurately reveal the current situation and future trend of carbon sink in peat wetlands, a model-multi-source observation data fusion system was constructed to complement the observation shortcomings in key areas, and provide reference and support for the construction of carbon neutral ecological civilization

    A Review: The Survey of the Effects of Light on Weed Recognition

    No full text
    Weeding is one of the important tasks in agricultural field management. With the development of society and information technology, automatic weeding has become a developing trend. The automatic recognition of weeds based visual is the important step. In this paper, the effects of lighting on green identification and weed identification algorithms are summarized. In order to improve the accuracy and stability of the identification of crops and weeds, some further worth problems in the study are also put forward. This will help further research on automatic weeding
    • ā€¦
    corecore