14 research outputs found

    Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review

    Get PDF
    Aqueous zinc ion batteries (ZIBs) are regarded as one of the most ideally suited candidates for large-scale energy storage applications owning to their obvious advantages, that is, low cost, high safety, high ionic conductivity, abundant raw material resources, and eco-friendliness. Much effort has been devoted to the exploration of cathode materials design, cathode storage mechanisms, anode protection as well as failure mechanisms, while inadequate attentions are paid on the performance enhancement through modifying the electrolyte salts and additives. Herein, to fulfill a comprehensive aqueous ZIBs research database, a range of recently published electrolyte salts and additives research is reviewed and discussed. Furthermore, the remaining challenges and future directions of electrolytes in aqueous ZIBs are also suggested, which can provide insights to push ZIBs’ commercialization

    Vertical Force Estimation of Heavy-Loaded Radial Tire Based on Circumferential Strain Analysis

    No full text
    In order to realize the quantitative estimation of tire vertical force, the algorithm of heavy-loaded tire vertical force estimation based on circumferential strain analysis is studied. A finite element analysis model of 16.00R20 tire is established. A comparison of tire loading test and modal vibration test indicates that the vertical stiffness error and vibration frequency error of the model are less than 7.79% and 5.49% respectively, which verifies the validity of the model. Using the finite element method, the influence of vertical force on tire grounding characteristics and circumferential strain of inner liner is studied. The characterization index of tire contact angle is proposed and verified by circumferential strain analysis, and the errors of the three indexes are all less than 8%. Taking the grounding angle and grounding length as identification features, the vertical force estimation model is established by combining grey wolf optimization (GWO) and the support vector regression (SVR), and the estimation accuracy is verified by finite element simulation. The results indicate that the characterization index in combination with the of characteristic point spacing angle of zero-order, first-order and second-order derivative of strain curve can accurately estimate tire contact angle. The error between the estimated value of the vertical force estimation algorithm based on GWO-SVR and the finite element simulation value is less than 1.8%

    Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review

    No full text
    Owing to the sustainability, environmental friendliness, and structural diversity of biomass-derived materials, extensive efforts have been devoted to using them in high-energy rechargeable batteries. Alkali-metal–selenium batteries, one of the high-energy rechargeable batteries with a reasonable cost compared to up-to-date lithium-ion batteries, have also attracted significant attention. Therefore, a timely and comprehensive review of the biomass carbon structures/components to the mechanisms for enhancing alkali-metal–selenium batteries has been systematically introduced. In the end, advantages, challenges, and outlooks are pointed out for the future development of biomass-derived carbon materials in alkali-metal–selenium batteries. This review could help researchers think about using biomass carbon materials to improve battery performance and what other problems should be solved, thereby promoting the application of biomass materials in battery design

    Biomass Carbon Materials Contribute Better Alkali-Metal–Selenium Batteries: A Mini-Review

    No full text
    Owing to the sustainability, environmental friendliness, and structural diversity of biomass-derived materials, extensive efforts have been devoted to using them in high-energy rechargeable batteries. Alkali-metal–selenium batteries, one of the high-energy rechargeable batteries with a reasonable cost compared to up-to-date lithium-ion batteries, have also attracted significant attention. Therefore, a timely and comprehensive review of the biomass carbon structures/components to the mechanisms for enhancing alkali-metal–selenium batteries has been systematically introduced. In the end, advantages, challenges, and outlooks are pointed out for the future development of biomass-derived carbon materials in alkali-metal–selenium batteries. This review could help researchers think about using biomass carbon materials to improve battery performance and what other problems should be solved, thereby promoting the application of biomass materials in battery design

    A preliminary study of calcium channel-associated mRNA and miRNA networks in post-traumatic epileptic rats

    No full text
    Abstract The calcium channels are the main pathogenesis and therapeutic target for post-traumatic epilepsy (PTE). However, differentially expressed miRNAs (DEMs) and mRNAs associated with calcium channels in PTE and their interactions are poorly understood. We produced a PTE model in rats and conducted RNA-seq in PTE rats. Gene annotation was used to verify differentially expressed mRNAs related to calcium channels. RNAhybrid, PITA, and Miranda prediction were used to build the miRNA–mRNA pairs. Furthermore, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used for the functional enrichment analysis of DEMs. The quantification changes of mRNA and miRNA were verified by RT-qPCR. There were 431 identified differentially expressed genes (DEGs) in PTE rats compared with the sham group, of which five mRNAs and 7 miRNAs were related to calcium channels. The miRNA–mRNA network suggested a negative correlation between 11 pairs of miRNA–mRNA involved in the p53 signaling pathway, HIF-1 signaling pathway. RT-qPCR verified three upregulated mRNAs in PTE rats, associated with 7 DEMs negatively related to them, respectively. This study has revealed the changes in miRNA–mRNA pairs associated with calcium channels in PTE, which might contribute to the further interpretation of potential underlying molecular mechanisms of PTE and the discovery of promising diagnostics
    corecore