29 research outputs found

    Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death

    Get PDF
    Hypoxia-inducible pro-death protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3), provokes mitochondrial permeabilization causing cardiomyocyte death in ischemia-reperfusion injury. Inhibition of autophagy accelerates BNIP3-induced cell death, by preventing removal of damaged mitochondria. We tested the hypothesis that stimulating autophagy will attenuate BNIP3-induced cardiomyocyte death. Neonatal rat cardiac myocytes (NRCMs) were adenovirally transduced with BNIP3 (or LacZ as control; at multiplicity of infection = 100); and autophagy was stimulated with rapamycin (100 nM). Cell death was assessed at 48 h. BNIP3 expression increased autophagosome abundance 8-fold and caused a 3.6-fold increase in cardiomyocyte death as compared with control. Rapamycin treatment of BNIP3-expressing cells led to further increase in autophagosome number without affecting cell death. BNIP3 expression led to accumulation of autophagosome-bound LC3-II and p62, and an increase in autophagosomes, but not autolysosomes (assessed with dual fluorescent mCherry-GFP-LC3 expression). BNIP3, but not the transmembrane deletion variant, interacted with LC3 and colocalized with mitochondria and lysosomes. However, BNIP3 did not target to lysosomes by subcellular fractionation, provoke lysosome permeabilization or alter lysosome pH. Rather, BNIP3-induced autophagy caused a decline in lysosome numbers with decreased expression of the lysosomal protein LAMP-1, indicating lysosome consumption and consequent autophagosome accumulation. Forced expression of transcription factor EB (TFEB) in BNIP3-expressing cells increased lysosome numbers, decreased autophagosomes and increased autolysosomes, prevented p62 accumulation, removed depolarized mitochondria and attenuated BNIP3-induced death. We conclude that BNIP3 expression induced autophagosome accumulation with lysosome consumption in cardiomyocytes. Forced expression of TFEB, a lysosomal biogenesis factor, restored autophagosome processing and attenuated BNIP3-induced cell death

    Autophagy is impaired in cardiac ischemia-reperfusion injury

    Get PDF
    Accumulating evidence attests to a prosurvival role for autophagy under stress, by facilitating removal of damaged proteins and organelles and recycling basic building blocks, which can be utilized for energy generation and targeted macromolecular synthesis to shore up cellular defenses. These observations are difficult to reconcile with the dichotomous prosurvival and death-inducing roles ascribed to macroautophagy in cardiac ischemia and reperfusion injury, respectively. A careful reexamination of ‘flux’ through the macroautophagy pathway reveals that autophagosome clearance is markedly impaired with reperfusion (reoxygenation) in cardiomyocytes following an ischemic (hypoxic) insult, resulting from reactive oxygen species (ROS)-mediated decline in LAMP2 and increase in BECN1 abundance. This results in impaired autophagy that is ‘ineffective’ in protecting against cell death with ischemia-reperfusion injury. Restoration of autophagosome clearance and by inference, ‘adequate’ autophagy, attenuates reoxygenation-induced cell death

    Targeting the autophagy-lysosome pathway in a pathophysiologically relevant murine model of reversible heart failure

    Get PDF
    The key biological drivers that are responsible for reverse left ventricle (LV) remodeling are not well understood. To gain an understanding of the role of the autophagy-lysosome pathway in reverse LV remodeling, we used a pathophysiologically relevant murine model of reversible heart failure, wherein pressure overload by transaortic constriction superimposed on acute coronary artery (myocardial infarction) ligation leads to a heart failure phenotype that is reversible by hemodynamic unloading. Here we show transaortic constriction + myocardial infarction leads to decreased flux through the autophagy-lysosome pathway with the accumulation of damaged proteins and organelles in cardiac myocytes, whereas hemodynamic unloading is associated with restoration of autophagic flux to normal levels with incomplete removal of damaged proteins and organelles in myocytes and reverse LV remodeling, suggesting that restoration of flux is insufficient to completely restore myocardial proteostasis. Enhancing autophagic flux with adeno-associated virus 9-transcription factor EB resulted in more favorable reverse LV remodeling in mice that had undergone hemodynamic unloading, whereas overexpressing transcription factor EB in mice that have not undergone hemodynamic unloading leads to increased mortality, suggesting that the therapeutic outcomes of enhancing autophagic flux will depend on the conditions in which flux is being studied

    Neuronal-targeted TFEB accelerates lysosomal degradation of app, reducing Aβ generation and amyloid plaque pathogenesis

    Get PDF
    In AD, an imbalance between Aβ production and removal drives elevated brain Aβ levels and eventual amyloid plaque deposition. APP undergoes nonamyloidogenic processing via α-cleavage at the plasma membrane, amyloidogenic β- and γ-cleavage within endosomes to generate Aβ, or lysosomal degradation in neurons. Considering multiple reports implicating impaired lysosome function as a driver of increased amyloidogenic processing of APP, we explored the efficacy of targeting transcription factor EB (TFEB), a master regulator of lysosomal pathways, to reduce Aβ levels. CMV promoter-driven TFEB, transduced via stereotactic hippocampal injections of adeno-associated virus particles in APP/PS1 mice, localized primarily to neuronal nuclei and upregulated lysosome biogenesis. This resulted in reduction of APP protein, the α and β C-terminal APP fragments (CTFs), and in the steady-state Aβ levels in the brain interstitial fluid. In aged mice, total Aβ levels and amyloid plaque load were selectively reduced in the TFEB-transduced hippocampi. TFEB transfection in N2a cells stably expressing APP695, stimulated lysosome biogenesis, reduced steady-state levels of APP and α- and β-CTFs, and attenuated Aβ generation by accelerating flux through the endosome-lysosome pathway. Cycloheximide chase assays revealed a shortening of APP half-life with exogenous TFEB expression, which was prevented by concomitant inhibition of lysosomal acidification. These data indicate that TFEB enhances flux through lysosomal degradative pathways to induce APP degradation and reduce Aβ generation. Activation of TFEB in neurons is an effective strategy to attenuate Aβ generation and attenuate amyloid plaque deposition in AD. SIGNIFICANCE STATEMENT A key driver for AD pathogenesis is the net balance between production and clearance of Aβ, the major component of amyloid plaques. Here we demonstrate that lysosomal degradation of holo-APP influences Aβ production by limiting the availability of APP for amyloidogenic processing. Using viral gene transfer of transcription factor EB (TFEB), a master regulator of lysosome biogenesis in neurons of APP/PS1 mice, steady-state levels of APP were reduced, resulting in decreased interstitial fluid Aβ levels and attenuated amyloid deposits. These effects were caused by accelerated lysosomal degradation of endocytosed APP, reflected by reduced APP half-life and steady-state levels in TFEB-expressing cells, with resultant decrease in Aβ production and release. Additional studies are needed to explore the therapeutic potential of this approach

    Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis

    Get PDF
    In sporadic Alzheimer's disease (AD), impaired Aβ removal contributes to elevated extracellular Aβ levels that drive amyloid plaque pathogenesis. Extracellular proteolysis, export across the blood–brain barrier, and cellular uptake facilitate physiologic Aβ clearance. Astrocytes can take up and degrade Aβ, but it remains unclear whether this function is insufficient in AD or can be enhanced to accelerate Aβ removal. Additionally, age-related dysfunction of lysosomes, the major degradative organelles wherein Aβ localizes after uptake, has been implicated in amyloid plaque pathogenesis. We tested the hypothesis that enhancing lysosomal function in astrocytes with transcription factor EB (TFEB), a master regulator of lysosome biogenesis, would promote Aβ uptake and catabolism and attenuate plaque pathogenesis. Exogenous TFEB localized to the nucleus with transcriptional induction of lysosomal biogenesis and function in vitro. This resulted in significantly accelerated uptake of exogenously applied Aβ42, with increased localization to and degradation within lysosomes in C17.2 cells and primary astrocytes, indicating that TFEB is sufficient to coordinately enhance uptake, trafficking, and degradation of Aβ. Stereotactic injection of adeno-associated viral particles carrying TFEB driven by a glial fibrillary acidic protein promoter was used to achieve astrocyte-specific expression in the hippocampus of APP/PS1 transgenic mice. Exogenous TFEB localized to astrocyte nuclei and enhanced lysosome function, resulting in reduced Aβ levels and shortened half-life in the brain interstitial fluid and reduced amyloid plaque load in the hippocampus compared with control virus-injected mice. Therefore, activation of TFEB in astrocytes is an effective strategy to restore adequate Aβ removal and counter amyloid plaque pathogenesis in AD

    Simple nutrients bypass the requirement for HLH-30 in coupling lysosomal nutrient sensing to survival

    Get PDF
    Lysosomes are ubiquitous acidified organelles that degrade intracellular and extracellular material trafficked via multiple pathways. Lysosomes also sense cellular nutrient levels to regulate target of rapamycin (TOR) kinase, a signaling enzyme that drives growth and suppresses activity of the MiT/TFE family of transcription factors that control biogenesis of lysosomes. In this study, we subjected worms lacking basic helix–loop–helix transcription factor 30 (hlh-30), the Caenorhabditis elegans MiT/TFE ortholog, to starvation followed by refeeding to understand how this pathway regulates survival with variable nutrient supply. Loss of HLH-30 markedly impaired survival in starved larval worms and recovery upon refeeding bacteria. Remarkably, provision of simple nutrients in a completely defined medium (C. elegans maintenance medium [CeMM]), specifically glucose and linoleic acid, restored lysosomal acidification, TOR activation, and survival with refeeding despite the absence of HLH-30. Worms deficient in lysosomal lipase 2 (lipl-2), a lysosomal enzyme that is transcriptionally up-regulated in starvation in an HLH-30–dependent manner, also demonstrated increased mortality with starvation–refeeding that was partially rescued with glucose, suggesting a critical role for LIPL-2 in lipid metabolism under starvation. CeMM induced transcription of vacuolar proton pump subunits in hlh-30 mutant worms, and knockdown of vacuolar H+-ATPase 12 (vha-12) and its upstream regulator, nuclear hormone receptor 31 (nhr-31), abolished the rescue with CeMM. Loss of Ras-related GTP binding protein C homolog 1 RAGC-1, the ortholog for mammalian RagC/D GTPases, conferred starvation–refeeding lethality, and RAGC-1 overexpression was sufficient to rescue starved hlh-30 mutant worms, demonstrating a critical need for TOR activation with refeeding. These results show that HLH-30 activation is critical for sustaining survival during starvation–refeeding stress via regulating TOR. Glucose and linoleic acid bypass the requirement for HLH-30 in coupling lysosome nutrient sensing to survival.</div

    Apolipoprotein M attenuates anthracycline cardiotoxicity and lysosomal injury

    Get PDF
    Apolipoprotein M (ApoM) binds sphingosine-1-phosphate (S1P) and is inversely associated with mortality in human heart failure (HF). Here, we show that anthracyclines such as doxorubicin (Dox) reduce circulating ApoM in mice and humans, that ApoM is inversely associated with mortality in patients with anthracycline-induced heart failure, and ApoM heterozygosity in mice increases Dox-induced mortality. In the setting of Dox stress, our studies suggest ApoM can help sustain myocardial autophagic flux in a post-transcriptional manner, attenuate Dox cardiotoxicity, and prevent lysosomal injury

    TRAF2, an innate immune sensor, reciprocally regulates mitophagy and inflammation to maintain cardiac myocyte homeostasis

    Get PDF
    Mitochondria are essential for cardiac myocyte function, but damaged mitochondria trigger cardiac myocyte death. Although mitophagy, a lysosomal degradative pathway to remove damaged mitochondria, is robustly active in cardiac myocytes in the unstressed heart, its mechanisms and physiological role remain poorly defined. We discovered a critical role for TRAF2, an innate immunity effector protein with E3 ubiquitin ligase activity, in facilitating physiological cardiac myocyte mitophagy in the adult heart, to prevent inflammation and cell death, and maintain myocardial homeostasis
    corecore