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Enhancing lysosome biogenesis attenuates
BNIP3-induced cardiomyocyte death

Xiucui Ma,1,2 Rebecca J. Godar,1,2 Haiyan Liu1 and Abhinav Diwan1,2,*

1Center for Cardiovascular Research; Division of Cardiology; Department of Internal Medicine; Washington University School of Medicine; St. Louis, MO USA;
2John Cochran VA Medical Center; St. Louis, MO USA
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Abbreviations: BNIP3, BCL2/adenovirus E1B 19 kd-interacting protein; FRET, Forster resonance energy transfer;
NRCM, neonatal rat cardiac myocyte; CQ, chloroquine; 3MA, 3-methyladenine

Hypoxia-inducible pro-death protein BNIP3 (BCL-2/adenovirus E1B 19-kDa interacting protein 3), provokes mitochondrial
permeabilization causing cardiomyocyte death in ischemia-reperfusion injury. Inhibition of autophagy accelerates BNIP3-
induced cell death, by preventing removal of damaged mitochondria. We tested the hypothesis that stimulating
autophagy will attenuate BNIP3-induced cardiomyocyte death. Neonatal rat cardiac myocytes (NRCMs) were adenovirally
transduced with BNIP3 (or LacZ as control; at multiplicity of infection = 100); and autophagy was stimulated with
rapamycin (100 nM). Cell death was assessed at 48 h. BNIP3 expression increased autophagosome abundance 8-fold and
caused a 3.6-fold increase in cardiomyocyte death as compared with control. Rapamycin treatment of BNIP3-expressing
cells led to further increase in autophagosome number without affecting cell death. BNIP3 expression led to accumula-
tion of autophagosome-bound LC3-II and p62, and an increase in autophagosomes, but not autolysosomes (assessed
with dual fluorescent mCherry-GFP-LC3 expression). BNIP3, but not the transmembrane deletion variant, interacted with
LC3 and colocalized with mitochondria and lysosomes. However, BNIP3 did not target to lysosomes by subcellular
fractionation, provoke lysosome permeabilization or alter lysosome pH. Rather, BNIP3-induced autophagy caused a
decline in lysosome numbers with decreased expression of the lysosomal protein LAMP-1, indicating lysosome
consumption and consequent autophagosome accumulation. Forced expression of transcription factor EB (TFEB) in
BNIP3-expressing cells increased lysosome numbers, decreased autophagosomes and increased autolysosomes,
prevented p62 accumulation, removed depolarized mitochondria and attenuated BNIP3-induced death. We conclude
that BNIP3 expression induced autophagosome accumulation with lysosome consumption in cardiomyocytes. Forced
expression of TFEB, a lysosomal biogenesis factor, restored autophagosome processing and attenuated BNIP3-induced
cell death.

Introduction

In myocardial ischemia-reperfusion injury, programmed cell death
causes substantial cardiac myocyte loss in addition to accidental
necrosis triggered by lack of oxygen and nutrients in the ischemic
core.1 The BCL-2 family of proteins is a key regulator of the
initiation and execution of programmed cell death pathways.2

BNIP33,4 a pro-death member of this family,5-7 is transcriptionally
upregulated in hypoxic cardiac myocytes,6,8 and causes mitochon-
drial permeabilization6,7 and dysfunction9 leading to cell death,
which is an important determinant of cardiac dysfunction10 and
post-infarction remodeling following ischemia-reperfusion injury.11

In the setting of increased BNIP3 expression, as happens with
cardiac ischemia-reperfusion injury,6 cardiomyocyte autophagy
is upregulated.10,12-14 Autophagy is an evolutionarily conserved
lysosomal degradative pathway to remove damaged intracellular
constituents that facilitates cellular homeostasis, and promotes cell

survival under stress such as nutrient deprivation and hypoxia.15

Induction of autophagy is protective in the ischemic heart,10,12-14

but has been implicated in causing cardiomyocyte death in
myocardial reperfusion injury.14 Forced expression of BNIP3
stimulates autophagy in cardiac myocytes,9,10,13,16 with a dose-
dependent increase in autophagosome abundance.16 While
BNIP3-induced autophagy has been implicated in causing cell
death in cancerous cells,17,18 induction of autophagy in the setting
of BNIP3 expression is protective in cardiac myocytes, as inhibi-
tion of autophagosome formation either pharmacologically [with
3-methyladenine (3MA)9] or with co-expression of dominant
negative autophagy-related (Atg) protein 5 (Atg5)9,10 increases
BNIP3-induced cardiomyocyte death. Conversely, enhancing
autophagosome formation with forced expression of Atg5 and
BECN1 appears to attenuate BNIP3-induced cell death in HL-1
cardiac myocytes.10,13 It is not known whether further induction
of protective autophagy in BNIP3-expressing cardiac myocytes is
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limited by the availability of constituents of the autophagic
machinery, or is actively suppressed, whereby it is unable to fully
protect cells from BNIP3-induced cell death.

BNIP3 permeabilizes cardiac mitochondria,19 promotes mito-
chondrial fission,20 and/or renders them dysfunctional,9 and the
damaged mitochondria are removed via macroautophagy,10,20 to
ensure cellular viability. Indeed, BNIP3 has been proposed as a
key mediator for autophagic removal of damaged mitochondria
under hypoxic stress21,22 and in unstressed cardiac myocytes.23

This process involves coordinated action of multiple Atg proteins
to sequester cargo, such as BNIP3-damaged mitochondria that
are targeted for destruction within autophagosomes, which then
fuse with lysosomes, wherein degradative enzymes break down
complex organic matter in an intralysosomal acidic environment,
to recycle amino acids, simple sugars and lipids.24 Rapamycin, a
potent inducer of cardiomyocyte autophagy,14 also stimulates
selective removal of dysfunctional mitochondria in yeast25 and
neurons,26 and attenuates apoptotic cell death.26 In this study, we
evaluated whether further induction of autophagosome formation
with rapamycin treatment attenuates BNIP3-induced cell death.
Our results implicate lysosomal consumption as a rate-limiting
factor in BNIP3-induced autophagy, whereby a strategy for
enhancing flux through the macroautophagy pathway, rather than
stimulating autophagosome formation alone, may accelerate
removal of BNIP3-damaged mitochondria.

Recent studies have identified a critical role for transcription
factor EB (TFEB), in upregulating synthesis of autophagy
proteins and stimulating lysosomal biogenesis in a coordinated
fashion to facilitate starvation-induced autophagy.27,28 We
therefore evaluated whether expression of TFEB will enhance
flux through macroautophagy in the setting of increased BNIP3
expression and protect against BNIP3-induced cell death. Our
results demonstrate that exogenous expression of TFEB increased
lysosome biogenesis, alleviating this rate limiting step in BNIP3-
induced autophagy and significantly attenuated BNIP3-induced
cardiomyocyte death.

Results

Rapamycin treatment does not attenuate BNIP3-induced
cardiomyocyte death. BNIP3-induced autophagy appears pro-
tective in cardiac myocytes, as inhibition of autophagy increases
cell death.9,10 In myocardial ischemia-reperfusion injury, induc-
tion of BNIP3 is a critical determinant of cell death leading to
myocardial dysfunction and post-ischemic ventricular remodel-
ing.10,11 Rapamycin is a potent inducer of autophagy in
cardiomyocytes;14 rapamycin pretreatment attenuates hypoxic
cardiomyocyte death,29 and mTOR inhibition with a related
compound, Everolimus, reduces infarct size and attenuates post-
infarction remodeling in rats subjected to cardiac ischemia-
reperfusion injury.30 Accordingly, to test the hypothesis that
further induction of autophagy with rapamycin will attenuate
BNIP3-induced cell death, we treated neonatal rat cardiac
myocytes (NRCMs) with rapamycin, both simultaneously and
24 h after adenoviral transduction of BNIP3 and assessed cell
death at 48 h. BNIP3 expression induced autophagy with a

significant increase in punctate GFP-LC3 localization (Fig. 1A
and B) and increased autophagosome-bound LC3-II abundance
(Fig. 1C), without a change in LC3 transcription (Fig. S1A).
Importantly, levels of p62, a protein that brings ubiquitinated
aggregates into autophagosomes and gets consumed during
autophagy,31 were elevated in BNIP3-expressing cells (Fig. 1C),
with a trend toward reduction in p62 transcription (Fig. S1B),
suggesting BNIP3-induced impaired clearance of p62. Rapamy-
cin added simultaneously (Fig. 1A) stimulated autophagy with
increased autophagosome abundance (Fig. 1A and B), and
increased LC3-II expression with a decline in p62 abundance
(Fig. 1C) as compared with control. Interestingly, while rapamy-
cin increased autophagosome numbers (Fig. 1A and B) and LC3-
II abundance (Fig. 1C) in BNIP3-expressing cells, p62 levels did
not decline (Fig. 1C) indicating lack of p62 clearance despite
further induction of autophagosome formation by rapamycin.
BNIP3 expression provoked a ~3.6-fold increase in cell death as
compared with controls (Fig. 1D and E), and further induction
of autophagy with rapamycin treatment either simultaneously
or 24 h after induction of BNIP3 expression (Fig. 1C), did not
affect BNIP3-induced cell death (Fig. 1D and E). Inhibition of
autophagosome formation with 3MA increased cell death in both
control and BNIP3-expressing cells, confirming a beneficial role
for autophagy in cardiomyocyte homeostasis and protection from
BNIP3-induced cell death, as previously described.9

BNIP3 induces autophagosome accumulation in cardiac
myocytes. Accumulation of p62 with increased autophagosome
abundance in BNIP3-expressing cells (Fig. 1C) suggested impair-
ment of autophagosome processing. Accordingly, we examined
autophagosome abundance in the absence and presence of
chloroquine (CQ), a lysosomal acidification inhibitor, which
leads to accumulation of autophagosomes due to impairment in
autophagosome-lysosome fusion and autophagosome removal.32

Cumulative flux, expressed as a ratio of autophagosome
abundance in the presence of CQ to autophagosome numbers
in its absence, was partially impaired with BNIP3 expresssion as
compared with LacZ-expressing adenovirus-transduced control
cells (1.3 vs. 4.4 in the control; Fig. 2A and B). In contrast,
nutrient deprivation and rapamycin led to autophagy induction
with better preserved flux as compared with BNIP3-expressing
cells (ratio of autophagosome abundance with/without CQ: 2.5
with nutrient deprivation and 2.5 with rapamycin; Fig. 2B). We
next examined the relative abundance of autophagosomes and
autolysosomes in BNIP3-expressing NRCMs lentivirally trans-
duced with an mCherry-GFP dual tandem tagged LC3. While
autophagosomes are evident as dual fluorescent LC3 puncta (red
+ green = yellow), autolysosomes appear red, as GFP fluorescence
is quenched in the acidic intralysosomal environment.33 Control
cells demonstrated basal autophagy with a preponderance of auto-
lysosomes (Fig. 2C and D). BNIP3 expression led to increased
autophagosome abundance, without an increase in autolysosomes
(Fig. 2C and D). This is in contrast to the predominant increase
in autolysosomes as compared with controls, observed with
autophagy induction due to nutrient deprivation and rapamycin
treatment, indicating intact flux through the macroautophagy
pathway under these conditions (Fig. 2C and D). Chloroquine
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treatment of cells transduced with control (LacZ) adenovirus
increased autophagosome-bound LC3-II abundance and led to
p62 accumulation (Fig. 2E), which was associated with a 1.8-fold
increase in cell death (Fig. 2F), likely secondary to autophago-
some accumulation (Fig. 2A and B) and lack of homeostatic
clearance of autophagic cargo such as damaged mitochondria. In
contrast, while CQ treatment of BNIP3-expressing cells caused a
further increase in LC3-II abundance (as compared with BNIP3-
expressing cells treated with diluent; Fig. 2E); there was no further
p62 accumulation (Fig. 2E), suggesting impaired autophagosome

clearance in BNIP3-expressing cells. In contrast to the effect of
CQ on cell death in control cells, the effect of chloroquine
treatment on cell death in BNIP3-expressing cells was marginal
(1.2 fold; Fig. 2F), correlating with an underlying impairment in
clearance of autophagosomes and possibly damaged mitochondria
in BNIP3-expressing cells in the absence of CQ treatment.
Interestingly, CQ treatment provoked an accumulation of the
monomeric, but not the dimeric forms of BNIP3 (Fig. 2E) and
rapamycin treatment preferentially reduced monomeric BNIP3
protein levels (Fig. 1C), indicating an underlying impairment in

Figure 1. Rapamycin treatment does not protect against BNIP3-induced cell death. (A) Representative epifluorescence images (630� magnification)
demonstrating cellular localization of GFP-LC3 in NRCMs adenovirally transduced with BNIP3 or LacZ (as control) for 48 h, and treated with rapamycin
(100 nmol/L) at T (time) = 0 (simultaneously at transduction). Nuclei are blue (DAPI). (B) Quantitation of punctate GFP-LC3 dots in cells from (A) (n = 25–
40 nuclei/group). p values are by post-hoc test. (C) Immunoblot demonstrating LC3, p62 and BNIP3 (FLAG) expression in NRCMs adenovirally transduced
with BNIP3 or LacZ (Con) for 48 h, and treated with rapamycin (100 nmol/L) at T (time) = 0 or 24 h after transduction. Expression of a-sarcomeric actin
(aSA) was assessed as loading control. (D) Representative images (200� magnification) demonstrating live (green) and dead (red) cells treated as in (A).
(E) Cell death in NRCMs adenovirally transduced with BNIP3 or LacZ (as control) for 48 h, and treated with rapamycin (100 nmol/L) at T(time) = 0 or 24 h
after transduction; or 3 methyl-adenine (7 mmol/L) at t = 24 h. n = 8/group. *p , 0.001 vs Bnip3-expressing cells. All p values are by post-hoc test.
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Figure 2. BNIP3 induces autophagosome accumulation in NRCMs. (A) Representative epifluorescence images (630� magnification) demonstrating
cellular localization of GFP-LC3 in NRCMs adenovirally transduced with BNIP3 (Red; for FLAG) or LacZ (as control) for 48 h, and treated with chloroquine
(10 mM, black bars) or diluent (white bars) for 24 h prior to fixation. Nuclei are blue (DAPI). (B) Quantification of punctate GFP-LC3 dots in cells treated as
in (A). and in cells subjected to nutrient deprivation or treated with rapamycin (100 nM) for 4 h in the presence of chloroquine (10 mM, black bars) or
diluent (white bars). p values are by post-hoc test. *p , 0.05 vs. diluent-treated control group. #p , 0.05 vs. CQ-treated control group (n = 15–25 nuclei/
group). (C) Representative epifluorescence images (630� magnification) demonstrating cellular localization of mCherry-GFP-LC3 in NRCMs adenovirally
transduced with Bnip3 or LacZ (as control) for 48 h; subjected to nutrient deprivation or treated with rapamycin (100 nM) for 4 h. (D) Quantitation of
autophagosomes (green+red; white bars), autolysosomes (red, black bars) and both (gray bars) in NRCMs treated as in (C) (n = 20–40 nuclei/group).
p values are by post-hoc test. *p , 0.05 for autophagosomes vs. control; #p , 0.05 for autolysosomes vs. control and $p , 0.05 for both vs. control
(n = 15–25 nuclei/group). (E) Immunoblot demonstrating LC3, p62 and BNIP3 (FLAG) expression in NRCMs adenovirally transduced with BNIP3 or LacZ
(Con) for 48 h and treated with chloroquine (10 mmol/L) or diluent for 24 h. Expression of a-sarcomeric actin (aSA) was assessed as loading control.
(F) Cell death in NRCMs treated as in E (n = 8–24/group).
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clearance of BNIP3-dimer and likely mitochondria that are
permeabilized only by the dimeric forms of BNIP3, during
BNIP3-induced autophagy.4,5,34,35

The transmembrane domain is essential for the interaction
of BNIP3 with LC3. The C-terminal transmembrane domain
of BNIP3 is essential for targeting mitochondria4,5 and the
endoplasmic reticulum,36 inducing mitochondrial permeabiliza-
tion and causing cell death.4-7,34 Recent studies have identified
an interaction between BNIP3 and LC3,9 likely via amino acid
sequences upstream of BNIP3’s C-terminal transmembrane
domain, based on similarities with a related protein NIX/
BNIP3L,37,38 suggesting that BNIP3 acts as a ‘receptor’ for
targeting mitochondria to autophagosomes.9,10,23 Interestingly, an
endogenous hypoxia-inducible splice variant of BNIP3 lacking
the transmembrane domain (BNIP3Dex3), but retaining the
higher affinity LC3 interaction region (LIR; homologous to LIR
labeled W35 in BNIP3L37) was recently identified.39 It is con-
ceivable that at high levels of BNIP3 expression, such as may
occur during hypoxia,6,8 the interaction between concomitantly
hypoxia-upregulated BNIP3Dex339 and LC3 protein involving
the non-transmembrane segment of the BNIP3 protein, such as
observed in silico with BNIP3L/NIX,37,38 leads to sequestration
of the available LC3, preventing its role in autophagic removal
of damaged mitochondria. To examine this premise, we assessed
the interaction of a transmembrane deletion mutant of BNIP3
(BNIP3DTM; with all putative LIR regions37 intact) and LC3,
each tagged with a FRET compatible fluorophore partner in

HEK 293 cells. As previously demonstrated,4 BNIP3DTM
demonstrated diffuse cellular localization (Fig. 3A; Fig. S2), and
did not induce autophagy,10 assessed as increased punctate
LC3 localization, as compared with controls (Fig. 3A; Fig. S2).
Interestingly, induction of autophagy by rapamycin treatment
led to markedly increased punctate LC3 localization, but did
not alter the subcellular localization of BNIP3DTM (Fig. S2),
suggesting that the interaction between BNIP3 and LC3
requires activation of autophagy with an intact transmembrane
domain. Indeed, assessment of interaction between full-length
BNIP3, and BNIP3DTM with LC3 by FRET (Fig. 3A and B)
and co-immunoprecipitation as previously described for BNIP3
and LC39 (Fig. 3C), confirmed an obligate role for the trans-
membrane domain in the interaction between BNIP3 and
LC3, potentially involving additional proteins recruited upon
BNIP3-induced mitochondrial permeabilization and dysfunc-
tion9,16,19,23 as observed with a closely related protein, BNIP3L/
NIX.37,41 Also, while full-length BNIP3 colocalized both with
LC3 and mitochondria in NRCMs, BNIP3DTM did not
(Fig. S3); indicating that only the full-length BNIP3 protein acts
as a receptor to target damaged mitochondria into autophago-
somes, as observed with the closely related protein, BNIP3L/
NIX.37,41 This suggests that increased BNIP3 expression results
in accumulation of autophagosomes containing full-length
BNIP3-targeted mitochondria,7,9,10,13,16 with potential deleterious
consequences secondary to impaired removal of these damaged
organelles.

Figure 3. The transmembrane domain of BNIP3 is required for its interaction with LC3 to target mitochondria into autophagosomes. (A) Representative
confocal images (630X) demonstrating FRET interaction between BNIP3, BNIP3DTM (both tagged with DsRed monomer) and LC3 (tagged with GFP) in
HEK293 cells. Cells transfected with DsRed-GFP dual fluorescent construct40 are shown as positive control. Nuclei are blue (Hoechst dye). Images with
acquired at the excitation (Ex) and emission (Em) settings indicated and merged as shown. (B) Quantitation of FRET signal in cells treated as in (A) (n = 8/
group). Cells transfected with constructs expressing DsRed-monomer and GFP, separately, are shown as negative control. p values are by post-hoc test.
(C) 3T3 fibroblasts were co-transduced with adenoviruses coding for FLAG-BNIP3, or HA-BNIP3DTM and GFP-LC3 (100 MOI each for 48 h) and extracts
subjected to co-immunoprecipitation employing BNIP3, GFP and IgG control antibodies.
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BNIP3 does not target lysosomes or alter lysosome pH.
Accumulation of autophagosomes in the setting of increased
BNIP3 expression may occur due to inhibition of subsequent
autophagosome processing. Additionally, previous studies have
suggested direct targeting of BCL-2 family proteins to lysosomes
as a potential mechanism for activation of cell death.42,43 Accord-
ingly, we examined whether BNIP3 targets to lysosomes or alters
lysosomal integrity. BNIP3 colocalizes together with both
lysosomes and mitochondria in NRCMs (Fig. 4A, see arrows,
bottom panel). This may indicate that BNIP3 targets to the
lysosomes independently or via localization on mitochondria
engulfed within autophagosomes that have subsequently fused
with lysosomes. Accordingly, to examine the organelle-specific
localization of BNIP3, we performed subcellular fractionation to
isolate fractions enriched in lysosomes, mitochondria and the
endoplasmic/sarcoplasmic reticulum in HL-1 cardiac myocytes, a
cell line that displays mammalian cardiomyocyte physiology and
can be easily expanded as necessary.44 As previously demon-
strated,36 BNIP3 protein segregated to subfractions enriched in
the mitochondrial marker COX IV, and the endoplasmic reti-
culum marker CALNEXIN, but not a lysosome marker, LAMP-1
(Fig. 4B).Taken together, these data indicate that BNIP3 protein
does not target lysosomes independently of being localized to
mitochondria, and suggest that autophagosome-lysosome fusion
in the setting of BNIP3-induced autophagy is not disrupted.
Additionally, BNIP3 did not cause lysosome permeabilization
(Fig. S4) or alter lysosome pH in NRCMs (Fig. 4C).

BNIP3-induced autophagososme formation leads to lyso-
some consumption. We next examined whether BNIP3 affects
lysosome abundance. Expression of full-length BNIP3, but not
BNIP3DTM, provoked a ~20% reduction in lysosome numbers
in NRCMs as assessed by uptake of two pH-dependent lysosome
probes, LysoTracker red (Fig. 5A–C) and LysoTracker green
(Fig. S5A), and cellular levels of LAMP-1 (Fig. 5D and H;
Fig. S6A), an abundant lysosomal membrane protein. This
decline in lysosome numbers closely tracked LC3-II and p62
accumulation, and was observed early (within 24 h of BNIP3
transduction; Fig. S5B and S5C), and at 10-fold lower infective
viral dose (MOI = 10; Fig S5D and S5E). BNIP3-induced
decline in lysosome abundance was prevented by 3MA-mediated
inhibition of BNIP3-induced autophagy (Fig. 5C), suggesting
lysosomal consumption during macroautophagy as the mech-
anism for reduced lysosome abundance in BNIP3-expressing cells,
without requisite replenishment as observed in starvation- and
rapamycin-induced autophagy.28,45 Interestingly, a decline in
LAMP-1 levels was also observed in NRCMs subjected to
prolonged hypoxia, which provokes maximal accumulation of the
BNIP3 protein8,46 (Fig. S7), suggesting that BNIP3-induced
lysosomal consumption may be of pathophysiological significance
in ischemic cardiac injury.

Enhancing lysosomal biogenesis with transcription factor EB
expression rescues BNIP3- induced cell death. To determine
whether restoring lysosome abundance would promote auto-
phagosome clearance in BNIP3-expressing NRCMs, we expressed
the transcription factor EB (TFEB), which was recently described
to promote biogenesis of lysosomes27,28 and autophagy proteins.28

Adenovirally transduced TFEB localized to the nucleus (Fig. 5A)
and expression of TFEB increased lysosome abundance (Fig. 5A–
C; Fig. S5A) with increased abundance of LC3 (Fig. 5D and F;
Fig. S6A) and LAMP-1 (Fig. 5D and H; Fig. S6A), induced
autophagosome formation as evidenced by punctate GFP-LC3
localization (Fig. S8) and increased the ratio of LC3-II/a-
sarcomeric actin (Fig. 5D and E), as previously described.28

Importantly, TFEB expression restored lysosome abundance in
BNIP3-expressing cells (Fig. 5A–C; Figs. S5A and S6A), with
a reduction in the ratio of LC3-II to LC3-I (Fig. 5D; Fig. S6B)
and reduced p62 accumulation (Fig. 5D and G; Fig. S6A) as
compared with NRCMs treated with BNIP3 alone. Interestingly,
while lower expression of TFEB (MOI = 10) did not alter BNIP3
protein abundance (Fig. S6A), higher expression of TFEB (MOI
= 100) was associated with a decline in BNIP3 protein levels
(Fig. 5D; Fig. S9) which was prevented by inhibition of auto-
phagy with 3MA (Fig. S9), suggesting enhanced clearance of
BNIP3 by TFEB-induced autophagy. Indeed, exogenous expres-
sion of TFEB restored autophagosome processing in BNIP3-
expressing cells, with a decline in prevalence of autophagosomes
and a commensurate increase in autolysosomes (Fig. 6A and B)
as compared with cells expressing BNIP3 alone. As shown
previously,9,10 BNIP3DTM did not stimulate cardiomyocyte
autophagy (Fig. 5D and E) or increase death (Fig. 6C). Enhance-
ment of autophagosome clearance by TFEB was associated with
a dose-dependent attenuation in BNIP3-induced cell death
(Fig. 6C) and in BNIP3-induced TUNEL positivity (Fig. 6D
and E). This was likely secondary to enhanced removal of
damaged mitochondria by a global induction of the autophagic
machinery driven by TFEB in the setting of BNIP3 expression, as
BNIP3 provoked an increase in green fluorescent JC-1 monomers
(Fig. 7A and B, top) with a reduction in red fluorescent JC-1
J-aggregates (Fig. 7A and B, bottom) and markedly increased
green to red fluorescence ratio (vs controls, Fig. 7C), indicating
increased depolarized mitochondria and reduced numbers of
normally polarized mitochondria,47 and suggesting accumulation
of damaged mitochondria48 (Fig. 7A–C), which was reversed by
co-expression of TFEB (Fig. 7A–C).

Discussion

In this study, we demonstrated that BNIP3-induced autophagy
in cardiac myocytes was rate limited by lysosome consumption,
which led to upstream autophagosome accumulation. Expres-
sion of transcription factor EB (TFEB) stimulated lysosome
biogenesis and restored processing of autophagosomes. The
resultant enhanced flux through the macroautophagy pathway
attenuated BNIP3-induced cell death.

The primary stimulus for autophagy induction with increased
BNIP3 expression, as occurs with hypoxic insult,6,8 appears to be
BNIP3 targeting to the organelle, in particular the mitochon-
dria.4,9,10,36 Indeed, our data confirm an obligate role for the
transmembrane domain of BNIP3 protein, which is essential for
organelle targeting,4,36 in inducing autophagy. BNIP3 induces
mitochondrial damage by multiple mechanisms, such as mito-
chondrial outer membrane permeabilization in concert with Bax
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and Bak,49 mitochondrial permeability transition by a novel cyclo-
philin D-independent mechanism,19 mitochondrial fragmenta-
tion in concert with Opa19,50 and Drp1,20 and mitochondrial
energetic dysfunction via protease-mediated cleavage of oxidative

phosphorylation/electron transport chain proteins.9,23 The oblig-
ate role of the transmembrane doman in the interaction of BNIP3
with LC3 proteins (see Fig. 3) suggests that mitochondrially-
localized BNIP3 interacts with autophagosome-bound LC3-II as a

Figure 4. BNIP3 does not target to lysosomes or affect lysosomal acidification. (A) Representative confocal images (630�) of NRCMs adenovirally
transfected with LacZ (Control, top panel) or BNIP3 (green, middle panel, zoomed-in view in bottom panel), costained for lysosomes (red; LysoTracker
red) and mitochondria (pink, MitoTracker deep red), demonstrating colocalization of BNIP3 with mitochondria and lysosomes (white arrowheads).
(B) HL-1 cardiac myocytes were adenovirally transduced with LacZ (Control) or FLAG-Bnip3 for 48 h and subcellular fractionation performed to obtain
fractions enriched for lysosomes (Lys), mitochondria (mito), endoplasmic reticulum (ER) and cytoplasm (C). Representative immunoblot demonstrating
distribution of BNIP3 (FLAG) in fractions enriched for LAMP1 (lysosome marker), COXIV (mitochondrial marker) and calnexin (ER marker).
(C) Representative confocal images (630�) of NRCMs adenovirally transduced with LacZ (Control) and BNIP3 (red) for 48 h and stained with lysosensor
yellow/blue to assess acidification status of lysosomes. Images were obtained at excitation with 360 nm and emission split between 390–460 nm
(blue, corresponding to emission maxima at pH 9.0) and 490–550 nm (yellow, corresponding to emission maxima at pH 3.0). NRCMs treated with
chloroquine (10 mmol/L for 1 h) to inhibit lysosomal acidification are shown as controls.
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receptor to facilitate autophagic removal of these damaged
mitochondria.9,10,23

Recent studies have employed bafilomycin A1 to inhibit
lysosome acidification and assess cumulative flux through the

macroautophagy pathway in BNIP3-expressing cells, and suggest
that autophagic flux is intact in this setting.9 While a BNIP3-
induced increase in autophagosomes is incontrovertible, the ratio
of autophagosome abundance with bafilomycin A1 treatment as

Figure 5. BNIP3-induced autophagy is associated with reduced lysosome abundance, which is restored by co-expression of TFEB. (A) Representative
epiflourescence images (630X) demonstrating lysosome distribution (by LysoTracker red staining) in cells adenovirally transduced with Bnip3, TFEB
(green, at 100 MOI), BNIP3+TFEB (at 100 MOI each) for 48 h. Nuclei are blue (Hoechst dye). Adenovirus coding for LacZ expression was added as
necessary to result in equivalent MOIs (at total 200 MOI per treatment). (B) Flow cytometric analysis of LysoTracker red staining in cells treated as in (A).
Control is depicted in black, BNIP3 in green, TFEB in red and BNIP3+TFEB in blue. (C) Assessment of LysotTracker red expression by flow cytometry in
NRCMs expressing BNIP3, BNIP3 DTM, TFEB, BNIP+TFEB for 48 h; and in BNIP3 expressing cells treated for 24 h with 3MA (7 mmol/L). (D) Representative
immunoblots demonstrating LC3, p62, BNIP3 (FLAG), BNIP3DTM (HA), TFEB (both rat TFEB and HA tagged human TFEB) and LAMP1 expression, with
a-sarcomeric actin (aSA) in NRCMs adenovirally transduced with LacZ (control), BNIP3, BNIP3DTM, TFEB and BNIP3+TFEB as in (A) (for 48 h). (E–H)
Quantitative assessment of LC3-II/a-sarcomeric actin ratio (E), total LC3 (F), p62 (G) and LAMP1 (H) abundance in NRCMs treated as in D (n = 3–7/group).
p values are by post-hoc test.
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compared with no treatment was low in BNIP3-expressing cells
when compared with a similar ratio in controls (1.6 in BNIP3-
expressing cells vs. 5 in controls).9 These data are comparable to
our results with CQ (which also inhibits lysosomal acidification;
see Fig. 2A and B), and taken together, suggest a partial impair-
ment in autophagosome processing in BNIP3-expressing cells.
Our data also suggest that under conditions of high levels of
BNIP3 expression as may occur with myocardial ischemia-
reperfusion injury,6,8 autophagosome processing is impaired, as
indicated by accumulation of p62, a protein that gets consumed
in the autophagic process,31 and accumulation of autophagosomes
without a commensurate increase in autolysosomes. Impaired
autophagosome clearance prevents removal of BNIP3-damaged
mitochondria, similar to that observed with preventing auto-
phagosome formation (e.g., with 3MA, or dominant negative

Atg59,10) or autophagosome processing (with CQ, see Fig. 2; or
bafilomycin A1 treatment9), and impairs the role for autophagy in
preventing BNIP3-mediated programmed cell death.

Previous studies have demonstrated that inducing autophago-
some formation with transfection of Atg510 or Becn113 attenuates
BNIP3-induced cell death. We observed that stimulating auto-
phagosome formation with rapamycin does not attenuate BNIP3-
induced cell death (Fig. 1). The observed differences may be
attributable to level of BNIP3 expression, whereby autophago-
some accumulation is only observed at high levels (as obtained
with adenoviral transduction of Bnip3), but not at lower levels
typically achieved with transfection based-methods in cardiac
myocytes. Alternatively, the previous studies10,13 may indicate a
specific impairment in ATG5 and/or BECN1 levels or function
in the context of BNIP3-induced autophagy, whereby restoring

Figure 6. Forced expression of TFEB restores autophagosome processing and attenuates cell death in BNIP3-expressing NRCMs. (A) Representative
epifluorescence images (630� magnification) demonstrating cellular localization of mCherry-GFP-LC3 in NRCMs adenovirally transduced with LacZ
(as control), BNIP3, TFEB and BNIP3+TFEB for 48 h. Nuclei are blue (DAPI). Adenovirus coding for LacZ expression was added as necessary to result in
equivalent MOIs (at total 200 MOI per treatment). (B) Quantitation of autophagosomes (green+red; white bars), autolysosomes (red, black bars) and both
(gray bars) LC3 in NRCMs treated as in (A) (n = 25–40 nuclei/group). *p, 0.05 vs. autophagosomes, $p, 0.05 vs autolysosomes and #p, 0.05 vs. both in
control group by post-hoc test. (C) Assessment of cell death in NRCMs transduced with LacZ (control), BNIP3, BNIP3DTM, TFEB (at MOIs = 10 and 100) and
BNIP3+TFEB (at MOIs = 10 and 100) for 48 h. Adenovirus coding for LacZ expression was added as necessary to result in equivalent MOIs (at total
200 MOI per treatment). *p , 0.05 vs. control and #p , 0.05 vs. BNIP3 by post-hoc test. (D) Representative epifluorescence images (200� magnification)
demonstrating TUNEL staining (green) in NRCMs treated as in (A). Nuclei are blue (DAPI). (E) Quantitative assessment of TUNEL positivity in NRCMs
treated as in (A). Adenovirus coding for LacZ expression was added as necessary to result in equivalent MOIs (at total 200 MOI per treatment) for both
(D and E). Treatment with staurosporine (1 mmol/L for 24 h) was employed as positive control (n = 5–9 experiments/group). p values are by post-hoc test.
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either one attenuates BNIP3-induced cell death. Exogenous
administration of TFEB is not known to stimulate synthesis of
ATG5 and BECN1,27,28 but could potentially have overcome this
limitation via synthesis of alternative proteins in the autophagic
pathway, resulting in the observed benefits. Also, while our data
suggest that autophagosome-lysosome fusion is not completely
disrupted in BNIP3-expressing cells, it may be impaired, and the
observed beneficial effects of TFEB expression may relate at least
in part to normalization or acceleration of this process. These
hypotheses require further investigation.

We found that BNIP3 expression triggers a decline in lyso-
some abundance in cardiac myocytes. This appears to be due to
lysosome consumption in the autophagy process, as it was
prevented by inhibition of autophagosome formation with 3MA,
and did not occur with the transmembrane deletion variant
BNIP3DTM which does not induce autophagy. Importantly,
BNIP3 did not target to or permeabilize lysosomes whereby it
could provoke a lysosomal pathway for cell death.51 Indeed,
enhancing lysosomal biogenesis in that setting would have
increased BNIP3-induced cell death, akin to adding fuel to the

fire. The decline in lysosome numbers with
BNIP3-induced autophagy indicates a lack of
recruitment of, or an active suppression of
mechanisms to enhance lysosomal biogenesis
endogenously as occurs in starvation-induced
autophagy.28 Notably, rapamycin treatment,
which results in an initial depletion of lyso-
somes followed by a rapid restoration of
lysosome abundance,45 did not attenuate
BNIP3-induced cell death, suggesting that
the observed beneficial effects of TFEB relate
to its ability to coordinately upregulate the
entire autophagic machinery.28 It is interesting
to speculate that active suppression of autop-
hagy by limiting the process at various steps
is a mechanism inherent to the programmed
cell death process, which prevents the pro-
survival function of lysosome-mediated auto-
phagy, and requires further study.

Materials and Methods

Cardiac myocyte culture. Neonatal rat cardiac
myocyte (NRCM) cultures were prepared as
described.14 Briefly, hearts were removed from
1-d-old Sprague-Dawley rats, the atria and
great vessels were trimmed off, and tissue was
finely minced followed by sequential diges-
tion with 0.5 mg/ml collagenase (WAKO,
LK03303). Ventricular cardiomyocytes were
separated from fibroblasts by differential
plating and were cultured in gelatin-coated
12-well tissue culture plates (0.4 hearts/well)
in media containing Dulbecco’s modified
Eagle’s medium, 10% horse serum, 5% fetal
calf serum, 100 mmol/L bromodeoxyuridine,

penicillin, streptomycin and L-glutamine. Nutrient deprivation
was induced as previously described.14 HL-1 cardiac myocytes
were a kind gift from Dr. William Claycomb, Louisiana State
University, New Orleans, and were cultured as described.44

Generation of viral constructs. The coding sequence for rat
Map1lc3β (microtubule-associated protein 1 light chain 3β) was
cloned in frame with GFP in pAcGFP-C vector (Clontech,
632470). The GFP-LC3 coding sequence was then cloned
downstream of mCherry in pLVx-mCherry-C vector (Clontech,
632561) and lentiviral particles coding for expression of dual
fluorescent tandem tagged mCherry-GFP-LC3 were generated
per the manufacturer’s instructions at the Hope Center Viral
Vectors Core at Washington University School of Medicine.
Transduction of lentiviruses was facilitated with polybrene, at
8 mg/ml (Sigma, H9268). Coding sequences for human BNIP3,
BNIP3DTM (see Supplementary methods for details) and human
TFEB, with N-terminal FLAG (DYKDDDDK; on BNIP3) and
HA (YPYDVPDYA; on BNIP3DTM and TFEB) tags were
cloned into pENTR-TOPO vector (Invitrogen, 45.0218) and
recombinant adenoviral constructs generated with Clonase

Figure 7. Forced expression of TFEB accelerates clearance of BNIP3-permeabilized mitochon-
dria. (A) Representative confocal images of NRCMs adnovirally transduced with BNIP3, TFEB,
BNIP3+TFEB (each at MOI = 100); and LacZ control (added to make total MOI = 200 in each
group) for 48 h, demonstrating expression of JC-1 mitochondrial stain. Emission wavelengths
employed for imaging the red and green fluorescence are depicted. Staurosporine (STS;
5 mmol/L for 2 h) was added as positive control. (B) Flow cytometric analysis of JC-1 expression
with representative traces demonstrating green fluorescence (FL1 channel, B, top) and red
fluorescence (FL2 channel, B, bottom). Control is depicted in black, BNIP3 in red, BNIP3+TFEB
in blue and staurosporine in green. (C) Quantitation of ratio or FL1/FL2 fluorescence of JC-1
expression in NRCMs treated as in (A). p values depicted are by post-hoc test after one-way
ANOVA (n = 3–6/group).
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mediated recombination (Virapower, Invitrogen, K493000).
Adenoviruses were generated in HEK293A cells and titered per
the manufacturer’s instructions.

Assessment of cell death. Cell death assays were performed in
96-well plates and chamber slide (Nunc, Fisher, 177429) format
with the Live-Dead Cytotoxicity Viability kit for Mammalian
cells (Invitrogen, L3224) per manufacturer’s instructions as
described.52 Quantitative assessment of fluorescence was per-
formed with BioTek Synergy-2 microplate reader equipped with
the appropriate filter sets (Green: Excitation 485 ± 10 nm,
Emission 528 ± 10 nm; Red: Excitation 540 ± 7.5 nm, Emission
620 ± 20 nm) at Chemical Genetics Screening Core at
Washington University School of Medicine. TUNEL staining
was performed as described.52

Immunofluorescence imaging. Imaging for GFP-LC3 and
mCherry-GFP-LC3 localization, and immunofluorescence for
FLAG and HA epitopes (with Alexa Fluor 488 and 594 tagged
secondary antibodies from Invitrogen, A21202 and A21207) were
performed on 4% paraformaldehyde fixed cells using Axioscap
upright microscope; AxioCam HRC camera and Plan Neofluar
objective (63X, NA1.25, oil) (Zeiss) fitted with appropriate filter
cubes. Images were acquired and analyzed using Zeiss Axiovision
software. Confocal imaging was performed on a Zeiss LSM 510
NLO Meta using an Achroplan 63X (NA 0.95) water objective
and Zeiss LSM software. Punctate fluorescent tagged LC3 dots
were counted and expressed as number per nucleus using Image J
software (NIH) as described.53 Organelle imaging was performed
using LysoTracker red (L7528) and green (L7526), MitoTracker
deep red FM (M22426), Hoechst dye (H3570), JC-1 (T3168;
all from Invitrogen) and DAPI (Vector Labs; H-1200) per
manufacturer’s protocols. Acridine orange (Biotium, 40039)
staining was performed as described.54 Assessment of lysosomal
pH was performed with pH-sensitive dye- Lysosensor yellow/
blue DND-160 (Invitrogen, L7545) following manufacturer’s
instructions.

Subcellular fractionation. HL-1 cells (7 � 107 cells per group)
were adenovirally transduced with LacZ (control) and Bnip3 [at
MOI (multiplicity of infection) = 100] for 48 h and subjected
to subcellular fractionation on a discontinuous nycodenz
gradient using procedures modified from protocols previously
described.55,56 Briefly, cells were homogenized in a medium
containing 0.25 M sucrose, 1 mM Na2EDTA, 10 mM HEPES
adjusted to pH 7.4 with NaOH. Homogenates were cleared off
unbroken cells with a brief 120 g spin and a mitochondria
+lysosome rich fraction was sedimented at 20,000 g for 20 min.
This fraction was layered on a discontinuous nycodenz (Optiprep,
Sigma, D1556) gradient (19%, 27% and 30%) and subjected to
ultracentrifugation at 110,000 g for 2 h in a swinging bucket
rotor. Three-milliliter fractions were collected from the gradient;
and lysosomes, and mitochondria with mitochondria-associated-
membranes were recovered from the top and 3rd (from top)
fractions, respectively. The supernatant from the 20,000 g spin
was subjected to ultracentrifugation at 100,000 g for 1 h to
recover endoplasmic reticulum rich fraction; with resultant
supernatant concentrated as cytosol using Ultracel-10K protein
filters (Millipore, UFC801024).

Assessment of FRET interaction. Constructs coding for
DsRed-BNIP3 or DsRed-BNIP3DTM (see supplementary meth-
ods for details) were co-transfected with GFP-LC3 in HEK293
cells. Construct encoding for DsRed-monomer-GFP fusion
protein40 was employed as positive control. Normalized FRET
was assessed by confocal microscopy and BioTek Synergy-2
microplate reader equipped with the appropriate filter sets as
described.40

Flow cytometry. NRCMs were incubated with LysoTracker
Red (1 mmol/L for 15 min at 37° in 5% CO2) or JC-1 (10 mg/ml
for 10 min at 37°C in 5% CO2) and subjected to flow cytometry
on FACScan instrument (Becton-Dickinson) as described.57

Cyflogic software (CyFlo) was employed to analyze 20,000 events
per run.

Co-immunoprecipitation studies. NIH 3T3 fibroblasts
were transduced with adenoviruses to co-express BNIP3 or
BNIP3DTM and GFP-LC3 (all at 100 MOI); and crude extracts
prepared as described. One and a half mg of total protein was
incubated with anti-GFP (Abcam, ab0290) and normal rabbit
IgG; and immunoprecipitation performed using Dynabeads

1

protein G (Invitrogen, 100.07D).
Immunoblotting. Immunoblotting was performed on cardiac

and cellular extracts using previously described techniques.11

Antibodies employed were as follows: FLAG (Sigma, F3165);
HA (Sigma, H6908), Bnip3 (Abcam, Ab10433), GFP (Clontech,
632375), LAMP1 (Abcam, AB24170); LC3 (Novus Biologicals,
NB100-2220); p62 (Abcam, ab5416); and a-sarcomeric actin
(Abcam, ab52219). Image J software was employed for quantita-
tive analysis. Protein abundance was normalized to a-sarcomeric
action expression and reported as fold change vs. control.
Chemicals employed were obtained as follows: rapamycin
(EMD4Biosciences, 553212); chloroquine (Sigma, CC6628); 3-
methyladenine (EMD4Biosciences, 189490); and staurosporine
(Sigma, S6942).

Statistical analysis. Results are expressed as mean ± SEM.
Statistical differences were assessed with the unpaired 2-tailed
Student’s t-test for two experimental groups and one-way
ANOVA for multiple groups with SPSS software. Bonferroni’s
post-hoc testing was employed after ANOVA for testing for
significant differences between groups. A two-tailed p value of
less than 0.05 was considered statistically significant.
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