868 research outputs found

    USArray Imaging of North American Continental Crust

    Get PDF
    The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope’s USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth’s surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix, and the combination of high temperature and water may point to small amounts of melt in the lower crust of Cordillera

    The Ancient China Studies of Marcel Granet: An Examination of Festivals and Songs of Ancient China

    Get PDF
    As both a sinologist and a sociologist, Marcel Granet tended to combine the sociological methods with textual analysis, which is best illustrated in his monograph Festivals and Songs of Ancient China. Although his methodology is imperfect, it challenged some traditional interpretation and provided inspiring perspectives for the study of ancient Chinese religions.

    NANOSTRUCTURED MATERIALS FOR SOLAR HYDROGEN GENERATION

    Get PDF
    Hydrogen can be considered a nonpolluting and inexhaustible energy carrier for the future. However, hydrogen is not readily available for use as a fuel. It exists in bound form with other elements (e.g. water, hydrocarbons) and as such energy is required to abstract molecular hydrogen from various feedstocks. Solar energy due to its abundance and low cost is being considered as the energy source for environmentally safe hydrogen generation. This dissertation focuses on the development and characterization of nano-structured materials for solar thermochemical hydrogen generation, on the principle that concentrated solar radiation can be employed as the high-temperature energy source for driving an endothermic hydrogen generation process. The reaction mechanism and kinetics of different solar thermochemical processes using those nano-structured materials as reactants or catalysts were investigated. The experimental works in this dissertation can be divided into two main areas. The first area is to study the properties and reactivity of in-situ generated Zn nanocrystals (NCs) for solar thermochemical Zn/ZnO water splitting cycle for hydrogen production. The particle size-resolved kinetics of Zn NCs oxidation, evaporation, and hydrolysis were studied using a tandem ion-mobility method in which the first mobility characterization size selects the NCs, whereas the second mobility characterization measures changes in mass resulting from a chemical reaction of the NCs. The second part of the dissertation is concentrated on the investigation of in-situ generated nano-sized metal particles as catalysts in liquid hydrocarbon decomposition process for hydrogen generation. Catalytic decomposition of liquid fuels (n-octane, iso-octane, 1-octene, toluene and methylcyclohexane) was achieved in a continuous tubular aerosol reactor as a model for the solar initiated production of hydrogen, and easily separable CO free carbonaceous aerosol product. The effects of fuel molecular structure and catalyst concentration on the overall hydrogen yield were studied. Using the similar aerosol catalysis idea, ignition of liquid fuels catalyzed by in-situ generated metal nanoparticles was investigated. The morphological change of catalyst particles during fuel ignition process and the catalytic ignition mechanism are discussed

    MOLECULAR DYNAMICS SIMULATION OF DICARBOXYLIC ACID COATED AQUEOUS AEROSOL: STRUCTURE AND PROCESSING OF WATER VAPOR

    Get PDF
    Low molecular weight dicarboxylic acids constitute a significant fraction of water-soluble organic aerosols in the atmosphere. They have a potential contribution to the formation of cloud condensation nuclei (CCN) and are involved in a series of chemical reactions occurring in atmosphere. In this work, molecular dynamics simulation method was used to probe the structure and the interfacial properties of the dicarboxylic acid coated aqueous aerosol. Low molecular weight dicarboxylic acids of various chain lengths and water solubility were chosen to coat a water droplet consisting of 2440 water molecules. For malonic acid coated aerosol, the surface acid molecules dissolved into the water core and form an ordered structure due to the hydrophobic interactions. For other nanoaerosols coated with low solubility acids, phase separation between water and acid molecules was observed. To study the water processing of the coated aerosols, the water vapor accommodation factors were calculated

    Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia

    Get PDF
    Drought, one of the most common natural disasters that have the greatest impact on human social life, has been extremely challenging to accurately assess and predict. With global warming, it has become more important to make accurate drought predictions and assessments. In this study, based on climate model data provided by the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), we used the Palmer Drought Severity Index (PDSI) to analyze and project drought characteristics and their trends under two global warming scenarios—1.5 °C and 2.0 °C—in Central Asia. The results showed a marked decline in the PDSI in Central Asia under the influence of global warming, indicating that the drought situation in Central Asia would further worsen under both warming scenarios. Under the 1.5 °C warming scenario, the PDSI in Central Asia decreased first and then increased, and the change time was around 2080, while the PDSI values showed a continuous decline after 2025 in the 2.0 °C warming scenario. Under the two warming scenarios, the spatial characteristics of dry and wet areas in Central Asia are projected to change significantly in the future. In the 1.5 °C warming scenario, the frequency of drought and the proportion of arid areas in Central Asia were significantly higher than those under the 2.0 °C warming scenario. Using the Thornthwaite (TH) formula to calculate the PDSI produced an overestimation of drought, and the Penman–Monteith (PM) formula is therefore recommended to calculate the index
    corecore