147 research outputs found

    Gender Difference of Unconscious Attentional Bias in High Trait Anxiety Individuals

    Get PDF
    By combining binocular suppression technique and a probe detection paradigm, we investigated attentional bias to invisible stimuli and its gender difference in both high trait anxiety (HTA) and low trait anxiety (LTA) individuals. As an attentional cue, happy or fearful face pictures were presented to HTAs and LTAs for 800 ms either consciously or unconsciously (through binocular suppression). Participants were asked to judge the orientation of a gabor patch following the face pictures. Their performance was used to measure attentional effect induced by the cue. We found gender differences of attentional effect only in the unconscious condition with HTAs. Female HTAs exhibited difficulty in disengaging attention from the location where fearful faces were presented, while male HTAs showed attentional avoidance of it. Our results suggested that the failure to find attentional avoidance of threatening stimuli in many previous studies might be attributed to consciously presented stimuli and data analysis regardless of participants' gender. These findings also contributed to our understanding of gender difference in anxiety disorder

    Stamp stress analysis with low temperature nanoimprint lithography

    No full text
    High temperature nanoimprint lithography has the drawback of long process cycle, demoulding difficulty, polymer degradation, thermal stress. Low temperature nanoimprint lithography (LTNIL) can avoid these problems. LTNIL is also ideal for manufacturing biological compatibility samples since the samples do not sustain high temperature. However, LTNIL need to optimize the press parameters in order to fully transfer patterns. Finite Element Method (FEM) is an excellent approach to examine the filling process. The stamp stress was simulated from four points of view, imprint pressure, imprint temperature, stamp pattern and stamp material. It was found that the stress in the stamp corners is especially bigger than other areas, the stress increases with the stamps aspect ratio increases, and stress distribution is more uniform for dense pattern stamp

    Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    Get PDF
    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SPn), and physical measurement to verify the performance of our study method on both accuracy and efficiency

    Qualitative Simulation of Photon Transport in Free Space Based on Monte Carlo Method and Its Parallel Implementation

    Get PDF
    During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results

    Role of Bile Acids in Liver Injury and Regeneration following Acetaminophen Overdose

    Get PDF
    Bile acids play a critical role in liver injury and regeneration, but their role in acetaminophen (APAP)–induced liver injury is not known. We tested the effect of bile acid modulation on APAP hepatotoxicity using C57BL/6 mice, which were fed a normal diet, a 2% cholestyramine (CSA)–containing diet for bile acid depletion, or a 0.2% cholic acid (CA)–containing diet for 1 week before treatment with 400 mg/kg APAP. CSA-mediated bile acid depletion resulted in significantly higher liver injury and delayed regeneration after APAP treatment. In contrast, 0.2% CA supplementation in the diet resulted in a moderate delay in progression of liver injury and significantly higher liver regeneration after APAP treatment. Either CSA-mediated bile acid depletion or CA supplementation did not affect hepatic CYP2E1 levels or glutathione depletion after APAP treatment. CSA-fed mice exhibited significantly higher activation of c-Jun N-terminal protein kinases and a significant decrease in intestinal fibroblast growth factor 15 mRNA after APAP treatment. In contrast, mice fed a 0.2% CA diet had significantly lower c-Jun N-terminal protein kinase activation and 12-fold higher fibroblast growth factor 15 mRNA in the intestines. Liver regeneration after APAP treatment was significantly faster in CA diet–fed mice after APAP administration secondary to rapid cyclin D1 induction. Taken together, these data indicate that bile acids play a critical role in both initiation and recovery of APAP-induced liver injury

    Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis

    Get PDF
    BackgroundBoth obesity (OB) and periodontitis (PD) are chronic non-communicable diseases, and numerous epidemiological studies have demonstrated the association between these two diseases. However, the molecular mechanisms that could explain the association between OB and PD are largely unclear. This study aims to investigate the common gene signatures and biological pathways in OB and PD through bioinformatics analysis of publicly available transcriptome datasets.MethodsThe RNA expression profile datasets of OB (GSE104815) and PD (GSE106090) were used as training data, and GSE152991 and GSE16134 as validation data. After screening for differentially expressed genes (DEGs) shared by OB and PD, gene enrichment analysis, protein-protein interaction (PPI) network construction, GeneMANIA analysis, immune infiltration analysis and gene set enrichment analysis (GSEA) were performed. In addition, receiver operating characteristic (ROC) curves were used to assess the predictive accuracy of the hub gene. Finally, we constructed the hub gene-associated TF-miRNA-mRNA regulatory network.ResultsWe identified a total of 147 DEGs shared by OB and PD (38 down-regulated and 109 up-regulated). Functional analysis showed that these genes were mainly enriched in immune-related pathways such as B cell receptor signalling, leukocyte migration and cellular defence responses. 14 hub genes (FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2, P2RY13, MMP7) showed high sensitivity and specificity in the ROC curve analysis. The results of immune infiltration analysis showed that immune cells such as macrophages, activated CD4 T cells and immune B cells were present at high infiltration levels in both OB and PD samples.The results of GeneMANIA analysis and GSEA analysis suggested that five key genes (FGR, LCK, FYB1, LY86 and P2RY13) may be strongly associated with macrophages. Finally, we constructed a TF-miRNA-mRNA regulatory network consisting of 233 transcription factors (TFs), 8 miRNAs and 14 mRNAs based on the validated information obtained from the database.ConclusionsFive key genes (FGR, LCK, FYB1, LY86, P2RY13) may be important biomarkers of OB and PD. These genes may play an important role in the pathogenesis of OB and PD by affecting macrophage activity and participating in immune regulation and inflammatory responses

    A new method for evaluating lung volume: AI-3D reconstruction

    Get PDF
    Objective: This study aims to explore the clinical application of an AI-3D reconstruction system in measuring lung volume and analyze its practical value in donor-recipient size matching in lung transplantation.Methods: The study retrospectively collected data from 75 subjects who underwent a plethysmography examination and lung CT at the First Hospital of Jilin University. General data and information related to lung function, and imaging results were collected. The correlation between actual total lung volume (aTLV), predicted total lung volume (pTLV), and artificial intelligence three-dimensional reconstruction CT lung volume (AI-3DCTVol) was analyzed for the overall, male, and female groups. The correlation coefficient and the absolute error percentage with pTLV and AI-3DCTVol were obtained.Results: In the overall, male, and female groups, there were statistical differences (p <0.05) between the pTLV formula and AI-3D reconstruction compared to the plethysmography examination value. The ICC between pTLV and aTLV for all study participants was 0.788 (95% CI: 0.515–0.893), p <0.001. Additionally, the ICC value between AI-3D reconstruction and aTLV was 0.792 (95% CI: 0.681–0.866), p <0.001. For male study participants, the ICC between pTLV and aTLV was 0.330 (95% CI: 0.032–0.617), p = 0.006. Similarly, the ICC value between AI-3D reconstruction and aTLV was 0.413 (95% CI: 0.089–0.662), p = 0.007. In the case of female research subjects, the ICC between pTLV and aTLV was 0.279 (95% CI: 0.001–0.523), p = 0.012. Further, the ICC value between AI-3D reconstruction and aTLV was 0.615 (95% CI: 0.561–0.870), p <0.001.Conclusion: The AI-3D reconstruction, as a convenient method, has significant potential for application in lung transplantation

    Three-dimensional Noninvasive Monitoring Iodine-131 Uptake in the Thyroid Using a Modified Cerenkov Luminescence Tomography Approach

    Get PDF
    BACKGROUND: Cerenkov luminescence tomography (CLT) provides the three-dimensional (3D) radiopharmaceutical biodistribution in small living animals, which is vital to biomedical imaging. However, existing single-spectral and multispectral methods are not very efficient and effective at reconstructing the distribution of the radionuclide tracer. In this paper, we present a semi-quantitative Cerenkov radiation spectral characteristic-based source reconstruction method named the hybrid spectral CLT, to efficiently reconstruct the radionuclide tracer with both encouraging reconstruction results and less acquisition and image reconstruction time. METHODOLOGY/PRINCIPAL FINDINGS: We constructed the implantation mouse model implanted with a 400 µCi Na(131)I radioactive source and the physiological mouse model received an intravenous tail injection of 400 µCi radiopharmaceutical Iodine-131 (I-131) to validate the performance of the hybrid spectral CLT and compared the reconstruction results, acquisition, and image reconstruction time with that of single-spectral and multispectral CLT. Furthermore, we performed 3D noninvasive monitoring of I-131 uptake in the thyroid and quantified I-131 uptake in vivo using hybrid spectral CLT. Results showed that the reconstruction based on the hybrid spectral CLT was more accurate in localization and quantification than using single-spectral CLT, and was more efficient in the in vivo experiment compared with multispectral CLT. Additionally, 3D visualization of longitudinal observations suggested that the reconstructed energy of I-131 uptake in the thyroid increased with acquisition time and there was a robust correlation between the reconstructed energy versus the gamma ray counts of I-131 (r(2) = 0.8240). The ex vivo biodistribution experiment further confirmed the I-131 uptake in the thyroid for hybrid spectral CLT. CONCLUSIONS/SIGNIFICANCE: Results indicated that hybrid spectral CLT could be potentially used for thyroid imaging to evaluate its function and monitor its treatment for thyroid cancer
    corecore