163 research outputs found

    Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations

    Get PDF
    Authors of the article systematically investigated how the membrane charge populations affect permselectivity by decoupling their effects from the impact of the pore structure using a multivariate strategy for constructing covalent-organic-framework membranes. The complex interplay between pore-pore interactions in response to charge variations for ion transport across the upscaled nanoporous membranes helps explain the obtained results. This study has far-reaching implications for the rational design of ionic membranes to augment energy extraction rather than intuitively focusing on achieving high densities

    BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen-wall biosynthesis in Brassica napus

    Get PDF
    7365AB, a recessive genetic male sterility system, is controlled by BnMs3 in Brassica napus, which encodes a Tic40 protein required for tapetum development. However, the role of BnMs3 in rapeseed anther development is still largely unclear. In this research, cytological analysis revealed that anther development of a Bnms3 mutant has defects in the transition of the tapetum to the secretory type, callose degradation, and pollen-wall formation. A total of 76 down-regulated unigenes in the Bnms3 mutant, several of which are associated with tapetum development, callose degeneration, and pollen development, were isolated by suppression subtractive hybridization combined with a macroarray analysis. Reverse genetics was applied by means of Arabidopsis insertional mutant lines to characterize the function of these unigenes and revealed that MSR02 is only required for transport of sporopollenin precursors through the plasma membrane of the tapetum. The real-time PCR data have further verified that BnMs3 plays a primary role in tapetal differentiation by affecting the expression of a few key transcription factors, participates in tapetal degradation by modulating the expression of cysteine protease genes, and influences microspore separation by manipulating the expression of BnA6 and BnMSR66 related to callose degradation and of BnQRT1 and BnQRT3 required for the primary cell-wall degradation of the pollen mother cell. Moreover, BnMs3 takes part in pollen-wall formation by affecting the expression of a series of genes involved in biosynthesis and transport of sporopollenin precursors. All of the above results suggest that BnMs3 participates in tapetum development, microspore release, and pollen-wall formation in B. napus

    Functionalized porous organic polymers for olefin/paraffin separations

    Get PDF
    Compositions containing a porous organic polymer and a monovalent metal cation are provided for separation/purification of olefins and paraffins. The compositions can be stable and recyclable. The compositions can contain acidic functional group having monovalent metal cations associated therein. The monovalent metal cations can include Ag(I) and Cu(I), capable of strong cation-pi binding to ethylene and other olefins. The compositions can have a large surface area greater than about 20 m2/g. The compositions can be used to separate/purify mixtures of ethylene and ethane. The compositions can have an ethylene/ethane adsorption selectivity of about 20 to 500 at 296 K. Methods of making the compositions are provided. Methods can include synthesizing the porous organic polymer, grafting acidic functional groups onto the polymer, and cation exchange with a salt or acid of a monovalent metal cation. Methods of olefin/paraffin separation are provided capable of achieving purities over 99%
    corecore