64 research outputs found

    Shear response behavior of STF/kevlar composite fabric in picture frame test

    Get PDF
    The picture frame test was applied to compare Kevlar neat and STF/Kevlar composite fabrics. The digital image correlation markers method was applied to measure the shear deformation behavior of the fabric in real-time under three loading rates: 100, 500, and 1000 mm/min. A theoretical model was applied to evaluate the effect of STF on the shear deformation stiffness of the fabric and cells and on the energy absorption during shear deformation. The results show that the STF/Kevlar composite fabric has a larger load-carrying capacity than the neat fabric in the picture frame test, and has obvious loading rate dependence. The yarn cell of the fabric undergoes slip deformation and reaches a shear-locked state; the shear modulus and the cell spring torsion coefficient of the STF/Kevlar composite fabric are significantly higher than those of neat fabric. The shear thickening behavior of STF occurs at higher loading rates, and the composite fabric has the highest shear deformation stiffness and shear energy absorption level

    Evolutionary Stages and Disk Properties of Young Stellar Objects in the Perseus Cloud

    Get PDF
    We investigated the evolutionary stages and disk properties of 211 Young stellar objects (YSOs) across the Perseus cloud by modeling the broadband optical to mid-infrared (IR) spectral energy distribution (SED). By exploring the relationships among the turnoff wave bands lambda_turnoff (longward of which significant IR excesses above the stellar photosphere are observed), the excess spectral index alpha_excess at lambda <~ 24 microns, and the disk inner radius R_in (from SED modeling) for YSOs of different evolutionary stages, we found that the median and standard deviation of alpha_excess of YSOs with optically thick disks tend to increase with lambda_turnoff, especially at lambda_turnoff >= 5.8 microns, whereas the median fractional dust luminosities L_dust/L_star tend to decrease with lambda_turnoff. This points to an inside-out disk clearing of small dust grains. Moreover, a positive correlation between alpha_excess and R_in was found at alpha_excess > ~0 and R_in > ~10 ×\times the dust sublimation radius R_sub, irrespective of lambda_turnoff, L_dust/L_star and disk flaring. This suggests that the outer disk flaring either does not evolve synchronously with the inside-out disk clearing or has little influence on alpha_excess shortward of 24 microns. About 23% of our YSO disks are classified as transitional disks, which have lambda_turnoff >= 5.8 microns and L_dust/L_star >10^(-3). The transitional disks and full disks occupy distinctly different regions on the L_dust/L_star vs. alpha_excess diagram. Taking L_dust/L_star as an approximate discriminator of disks with (>0.1) and without (<0.1) considerable accretion activity, we found that 65% and 35% of the transitional disks may be consistent with being dominantly cleared by photoevaporation and dynamical interaction respectively. [abridged]Comment: 31 pages, 13 figures, 2 tables. To appear in a special issue of RAA on LAMOST science

    Effect of arabinogalactan protein complex content on emulsification performance of gum arabic

    Get PDF
    The emulsification properties of the standard (STD), matured (EM2 and EM10) and fractionated gum arabic samples via phase separation induced molecular fractionation were investigated to find out how the content of arabinogalactan protein (AGP) complex affects the resulting emulsion properties. Phase separation and the accompanying molecular fractionation were induced by mixing with different hydrocolloids including hyaluronan (HA), carboxymethyl cellulose (CMC), and maltodextrin (MD). Increase of AGP content from 11 to 28% resulted in the formation of emulsions with relatively smaller droplet sizes and better stability. Further increase in the AGP content to 41% resulted in the formation of emulsions with larger droplets. In spite of the larger droplets sizes, these emulsions were extremely stable. In addition, the emulsions prepared with GA higher AGP content better stability in the presence of ethanol. The results indicate that AGP content plays a vital role in emulsion stability and droplet size

    Magnetic properties of Ce-containing Pr/Nd-Fe-B sintered magnets by diffusing Nd-Dy-Al alloy

    Get PDF
    In this study, 5% wt Ce-containing sintered Pr/Nd-Ce-Fe-B magnets were processed by grain boundary diffusion (GBD) with NdxDy90-xAl10 alloy (x = 0, 10, and 20 correspond to N0, N10, and N20, respectively). After the GBD process, the coercivity of magnets increased from 1,124.7 to 1,656.4, 1,673.9, and 1,584.8 kA/m, for N0, N10, and N20, respectively. Microstructure analysis revealed continuous RE-rich intergranular phases around matrix grains, which by weakening the magnetic coupling effect between ferromagnetic matrix grains, thus, leads to coercivity improvement. N10 had the same coercivity enhancement as N0, while the Dy utilization for N10 is lower than that for N0. The SEM results showed that the inclusion of Nd leads to the formation of a network of low-melting grain boundary phases, providing channels for subsequent Dy diffusion. A CeFe2 phase was found in the 5% wt Ce-containing magnet, which hindered diffusion due to its high melting point; in order to inhibit the negative impact of CeFe2 and reveal the diffusion mechanism in the Ce-containing magnet, DyH3, as a diffusion source, was applied to 5% wt-Ce-containing magnets simultaneously; after the GBD process, Nd10Dy90Al10 alloy, as a diffusion source, has better coercivity enhancement than DyH3, due to the deeper diffusion of the Dy element in the Nd10Dy90Al10 diffusion

    ERTNet: an interpretable transformer-based framework for EEG emotion recognition

    Get PDF
    BackgroundEmotion recognition using EEG signals enables clinicians to assess patients’ emotional states with precision and immediacy. However, the complexity of EEG signal data poses challenges for traditional recognition methods. Deep learning techniques effectively capture the nuanced emotional cues within these signals by leveraging extensive data. Nonetheless, most deep learning techniques lack interpretability while maintaining accuracy.MethodsWe developed an interpretable end-to-end EEG emotion recognition framework rooted in the hybrid CNN and transformer architecture. Specifically, temporal convolution isolates salient information from EEG signals while filtering out potential high-frequency noise. Spatial convolution discerns the topological connections between channels. Subsequently, the transformer module processes the feature maps to integrate high-level spatiotemporal features, enabling the identification of the prevailing emotional state.ResultsExperiments’ results demonstrated that our model excels in diverse emotion classification, achieving an accuracy of 74.23% ± 2.59% on the dimensional model (DEAP) and 67.17% ± 1.70% on the discrete model (SEED-V). These results surpass the performances of both CNN and LSTM-based counterparts. Through interpretive analysis, we ascertained that the beta and gamma bands in the EEG signals exert the most significant impact on emotion recognition performance. Notably, our model can independently tailor a Gaussian-like convolution kernel, effectively filtering high-frequency noise from the input EEG data.DiscussionGiven its robust performance and interpretative capabilities, our proposed framework is a promising tool for EEG-driven emotion brain-computer interface

    Product market competition returns to skill and wage inequality

    Get PDF
    This paper shows that increasing product market competition can have a direct impact on the employment relationship and on wage inequality. I develop a simple model in which an increase in product market competition increases returns to skill through the effect of competition on the sensitivity of profits to cost reductions. I then show empirically that relative wages increase with competition using a large panel of United Kingdom workers with complete work histories. I identify the impact of competition on returns to skill in the panel, using two exogenous measures of competition provided by two quasi-natural experiments. Quantile regressions indicate that increased competition also raised returns to unobserved ability

    Study on Thermal Characteristics of Angular Contact Ball Bearings Considering Roundness Error

    No full text
    To develop an angular contact ball bearing with low power consumption, a heat generation calculation model for angular contact ball bearings has been established based on bearing quasi dynamics, elastohydrodynamic lubrication theory, heat transfer theory, and Kirchhoff’s law of energy conservation, considering the effects of roundness error, bearing preload, centrifugal effect, and thermal expansion. The correctness of the model is verified through experiments. The influence of different operating conditions and roundness errors on the thermal characteristics of angular contact ball bearings is analyzed. The results of the calculation indicate that when the roundness error order is equal to the number of balls n/2 ± 2 (where n = 1, 2, 3, 
), the overall heat generation of the bearing is lower than that without considering the roundness error. When the roundness error order is equal to (2n − 1)/4 ± 2 (where n = 1, 2, 3, 
), the overall heat generation of the bearing is higher than that without considering the roundness error. At the same rotating speed, the overall heat generation fluctuates as the roundness error order changes, and the trend becomes more pronounced as the rotating speed increases. The maximum overall heat generation is achieved when the roundness error order equals (2n − 1)/4 times (where n = 1, 2, 3, 
) the number of balls. When the roundness error order is equal to n/2 times the number of balls (where n = 1, 2, 3, 
), the bearing’s overall heat generation is minimal. The variation in the total heat generated by the bearing is directly proportional to the amplitude of the roundness error. With the increase in roundness error harmonic order, the bearing integral heat generation shows a periodic change, and the change period has a mapping relationship with the number of balls

    Degradation Mechanisms of Transparent Polyurethane Interlayer under UV Irradiation

    No full text
    According to the ageing problem of laminated transparency, the trasparent polyurethane film used as interlayer had been irradiated by fluorescent ultraviolet lamp for 0 h, 200 h, 300 h, and 500 h respectively. With the aid of ultraviolet/visible spectrophotometer, FTIR and SEM etc., the color, structure and morphology of the materials were studied. SEM shows that when the irradiation time is increased to 500 h, the film surface cracks. The UV degradation mechanisms are that -CH2- of the position connecting the O and N from hard segment and the soft segment are easy to oxidize and produce hydrogen peroxide under UV and oxygen, which is furtherly oxidized to CO, and some part of the C-O and C-N bonds is cracked through ÎČ scission, and then the materials are fractured

    Construction strategy on outdoor environment of ecological community in dry region–Lanzhou, China

    No full text
    In order to improve the human thermal comfort of the ecological community, aiming at the characteristics of low humidity and large wind and sand in northwest areas such as Lanzhou, the method was proposed to improve the human thermal comfort by water evaporation from porous pavement. Firstly, the outdoor environmental model of the ecological community was established and the environmental parameters of a community are simulated by using the model in Lanzhou. The simulation results are compared with the experimental results, and the relative error is less than 15%. Secondly, the change law of outdoor thermal and humid environment is simulated and analysed when porous pavement and ordinary pavement are used in ecological community, respectively. The results show that the humid environment of the community has changed significantly and the maximum change is about 7% after considering the water evaporation from porous pavement. Meanwhile, the amount of single water sprayed onto the porous pavement should meet the water evaporation requirement of 1.67h under the climatic conditions at that time. The above research results provide theoretical guidance for improving the outdoor thermal comfort of residential buildings in dry region
    • 

    corecore