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Background: Emotion recognition using EEG signals enables clinicians to 
assess patients’ emotional states with precision and immediacy. However, the 
complexity of EEG signal data poses challenges for traditional recognition 
methods. Deep learning techniques effectively capture the nuanced emotional 
cues within these signals by leveraging extensive data. Nonetheless, most deep 
learning techniques lack interpretability while maintaining accuracy.

Methods: We developed an interpretable end-to-end EEG emotion recognition 
framework rooted in the hybrid CNN and transformer architecture. Specifically, 
temporal convolution isolates salient information from EEG signals while 
filtering out potential high-frequency noise. Spatial convolution discerns the 
topological connections between channels. Subsequently, the transformer 
module processes the feature maps to integrate high-level spatiotemporal 
features, enabling the identification of the prevailing emotional state.

Results: Experiments’ results demonstrated that our model excels in diverse 
emotion classification, achieving an accuracy of 74.23%  ±  2.59% on the 
dimensional model (DEAP) and 67.17%  ±  1.70% on the discrete model (SEED-V). 
These results surpass the performances of both CNN and LSTM-based 
counterparts. Through interpretive analysis, we ascertained that the beta and 
gamma bands in the EEG signals exert the most significant impact on emotion 
recognition performance. Notably, our model can independently tailor a 
Gaussian-like convolution kernel, effectively filtering high-frequency noise from 
the input EEG data.

Discussion: Given its robust performance and interpretative capabilities, 
our proposed framework is a promising tool for EEG-driven emotion brain-
computer interface.

KEYWORDS

EEG, emotion recognition, deep learning, transformer, interpretability

1 Introduction

Emotions represent one of the higher cognitive functions of the brain that directly 
responds to the current mental state of the body (Tyng et al., 2017). Electroencephalography 
(EEG) emotion recognition aims to detect human emotional states by measuring and analyzing 
EEG signals. This approach has been broadly researched in the emotion recognition research 
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field due to its high temporal resolution, non-invasiveness, and 
affordability (Gu et al., 2022; Tuncer et al., 2022). Regions of the brain, 
such as the orbitofrontal cortex, ventral media prefrontal cortex, 
amygdala, and hippocampal complex, have a close relationship with 
emotion generation and regulation, making EEG a dependable tool 
for emotion recognition (Phelps, 2004; Lindquist and Barrett, 2012). 
Previous studies have also demonstrated that EEG signals contain 
valuable information about current emotions, with the beta and 
gamma segments carrying the most significant information (Li et al., 
2018; Pandey and Seeja, 2022). However, EEG signals also present 
challenges for feature extraction due to their instability, complexity, 
and limited spatial resolution.

Prior research, notably machine learning algorithms, has heavily 
relied on the quality of manually extracted features, which typically 
comprise signal statistical features (Jenke et al., 2014; Nawaz et al., 
2020), power spectral density (PSD; Kollia, 2016), intrinsic mode 
functions (IMFs; Chen et al., 2019), spectrogram (Wang et al., 2019), 
wavelet coefficients (Aydin et  al., 2016; Pandey and Seeja, 2022), 
fractal dimensional features (Tuncer et al., 2021), and entropy features 
(Li et al., 2022), among others.

Deep learning has emerged as a key methodology in the field of 
brain-computer interfaces due to its ability to bypass complex manual 
feature extraction and improve accuracy. In the task of EEG emotion 
recognition, convolutional neural networks (CNNs) are widely used 
due to their efficiency in extracting localized spatio-temporal features, 
EEGNet (Lawhern et al., 2018) is still considered one of the most 
reliable tool for EEG signal analysis. In addition, the EEG emotion 
recognition model based on improved CNNs by Liu et al. (2020), Zhu 
et  al. (2021), Ding et  al. (2022), and Chen et  al. (2023) remains 
competitive. However, for EEG data characterized by long temporal 
dependencies, CNNs are obviously not the optimal choice. Techniques 
that feed EEG or processed features into LSTM networks, as 
demonstrated by Li et al. (2018), Xing et al. (2019), and Chakravarthi 
et al. (2022), yield superior results compared to CNNs. In addition, 
more advanced deep learning methods are being applied to EEG 
emotion recognition. These include the TC-Net network proposed by 
Wei et al. (2023). which combines Transformers and CapsNet and 
effectively captures both global and local features. In addition, the 
introduction of graph neural networks by Li et al. (2023) and Liu et al. 
(2023) to extract higher-order spatial features for EEG emotion 
recognition is a significant advance.

Beyond normal EEG emotion recognition, medical and clinical 
applications are attracting more attention (Pepa et al., 2023). Emotion 
recognition plays an important role in Cognitive Behavioral Therapy 
(CBT; Carpenter et al., 2018), Emotion Regulation Therapy (ERT)/
Emotion-Focused Therapy (EFT; Lane et al., 2015), and the evaluation 
of medical treatment for emotion-related mental disorders, such as 
Generalized Anxiety Disorder (Goodwin et al., 2017) and Depression 
(Duman et al., 2016). EEG-based emotion brain-computer interfaces 
hold valuable as a tool for detecting affective feedback in remote 
healthcare (Tripathi et al., 2022). Huang et al. (2021) designed an 
emotion brain-computer interface system for patients with 
consciousness disorders, allowing them to express emotions through 
the interface. Wang et al. (2023) aim to understand the emotional 
cognition of hearing-impaired patients who are deprived of auditory 
information for long periods of time through EEG emotion 
recognition. However, the “black box” nature of deep learning poses 
a challenge to its further application. The Explainable AI (XAI) in 

EEG emotion recognition will be a critical area of future research. Not 
only will it help researchers validate existing medical knowledge or 
discover new ones, as Mayor Torres et al. (2023) using the explainable 
deep learning algorithm SincNet to identify high-alpha and beta 
suppression in EEG signals of individuals with autism spectrum 
disorders, but it will also increase physicians’ confidence in using deep 
learning for diagnosis (Jafari et al., 2023).

In this study, we proposed an interpretable end-to-end framework 
for EEG emotion recognition based on the transformer architecture. 
The framework uses EEG signals as input without the need for 
complex feature extraction and is both lightweight and interpretable. 
The remainder of the manuscript is organized as follows. Section 2.1 
provides an introduction to the datasets used, including details on the 
employed preprocessing methods. In section 2.2, we  introduce 
emotion recognition transformer network (ERTNet). Section 3 
discusses the evaluations of our framework. Section 4 provides a 
comprehensive discussion, while section 5 details the conclusion.

2 Materials and methods

2.1 Datasets and preprocessing

Several institutions offer EEG datasets that can be used to train 
and validate emotion recognition models, such as DEAP (Koelstra 
et  al., 2012), SEED (Wei-Long Zheng and Bao-Liang Lu, 2015), 
SEED-IV (Zheng et  al., 2019), SEED-V (Liu et  al., 2022), 
MAHNOB-HCI (Soleymani et al., 2012), and other datasets. These 
datasets elicit different emotional states by exposing participants to 
videos or audio stimuli. To assess the effectiveness of our proposed 
model, we conducted experiments using both the DEAP and SEED-V 
datasets. The diversity and richness of these datasets enhance our 
ability to evaluate the model’s generalization ability and robustness, 
providing a reliable foundation for future clinical applications.

2.1.1 DEAP
The DEAP dataset, collected by Queen Mary University of London, 

United Kingdom, is a multimodal dataset that documents 32 EEG leads 
and 8 other physiological signals (Koelstra et al., 2012). This dataset 
records physiological signals evoked by music videos. We  utilized 
processed EEG data that had undergone a band-pass filter of 4 to 45 Hz, 
with removed EOG physiological artifacts, and resampled to 128 Hz. 
These EEG signals were segmented into non-repetitive 4-s segments 
for model evaluation. Emotion labels were assigned based on the 
Valence-Arousal-based approach (Russell, 1980) was chosen, as shown 
in Figure 1, classifying emotions into four categories: high arousal, high 
valence (HAHV), low arousal, high valence (LAHV), high arousal, low 
valence (HALV), and low arousal, low valence (LALV).

2.1.2 SEED-V
The SEED-V dataset, provided by the Laboratory of Brain-like 

Computing and Machine Intelligence at Shanghai Jiao Tong 
University, comprises emotional states categorized into five categories, 
collected from 16 subjects of a 1 1:  male-to-female ratio. The subjects’ 
EEG signals were recorded while they watched movie clips, and the 
dataset includes emotions such as “happy,” “sad,” “disgust,” “fearful,” 
and “neutral.” EEG signals were recorded in a total of 62 channels in 
accordance with the international 10–20 system (Liu et al., 2019).

https://doi.org/10.3389/fnins.2024.1320645
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2024.1320645

Frontiers in Neuroscience 03 frontiersin.org

The preprocessing was performed using the same steps as outlined 
in Liu et  al. (2022) and Wu et  al. (2020), we  applied several 
preprocessing steps to the data, including (1) removal of 50  Hz 
industrial frequency interference using MNE-Python (Gramfort, 
2013); (2) elimination of physiological artifacts using the EOG and 
FPZ channels provided in the dataset; (3) application of the FIR 
bandpass filter provided by MNE-Python to remove signals outside 
the 1–50 Hz range; (4) segmentation of the data into non-repeating 4-s 
segments; and (5) resampling of the signal to 200 Hz and normalization.

2.2 Framework

Figure 2 depicts the general structure of our proposed framework, 
named ERNet. Its core components consist of a feature extraction 
module and a transformer module.

The feature extraction module, similar to EEGNet, predominantly 
utilizes spatio-temporal convolution techniques. The initial layer 
employs 1D convolution to remove noise and extract features. A batch 
normalization layer is inserted between the first and second layer to 
address the issue of vanishing gradients. However, to maintain the 
interpretability of the spatiotemporal convolution, an activation 
function is excluded from the first convolutional layer. The second 
layer comprises of a spatial convolution layer, which merges the valid 
information on all channels. The spatial convolution is separated in 
depth dimension, achieved through depthwise convolution in the 
code. The activation function is recovered while adding the batch 
normalization layer between the second and third layer. The third 
layer comprises an average pooling layer, which pools with a length of 
4. In order to avoid overfitting, a dropout layer is included after the 
third layer. Following both batch normalization and dropout layer, the 
last layer, a high-level feature fusion layer is employed. This layer 
leverages a separable convolutional layer implementation, minimizing 
the number of parameters. Finally, the feature extraction module 
output will reduce in dimension to fit the transformer module.

Its feature extraction module has four important parameters, F1, 
T , D, and F2, denoting the number of temporal convolutional kernels, 
the length of temporal convolutional kernels, the number of spatial 
convolutional kernels, and the number of pointwise convolutional 
kernels in the separable convolutional layer, respectively. Following 
EEGNet, we set F F D2 1= × .

The transformer module is derived from the encoder section of the 
transformer structure proposed by Google in 2017 (Vaswani et al., 2017). 
It employs position encoding at the connection between the transformer 
block and the feature extraction part to help parallel multi-head attention 
to focus on temporal information. The transformer module comprises a 
multi-head attention layer and a feed-forward layer, incorporating a 
residual structure and layer normalization layer present at their output. 
To minimize the number of parameters, the feed-forward layer uses a 

FIGURE 2

Framework of ERTNet.

FIGURE 1

Arousal-valence space.
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single neural network layer. The multi-head attention layer is the core 
component of the transformer module to help the model better integrate 
the features of the output of the feature extraction part. For an input 
X Rd F∈ × 2 , the output of the multi-head attention is computed as:
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where n denotes the number of self-attentive heads, n = 8 in our 
experiments, Concat ⋅( )  denotes the merge operation, and Wi
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incorporates a global average pooling layer in place of the flatten layer 
to decrease the number of parameters, and it is then connected to the 
decision layer.

Moreover, the dropout rate is set to 0.5  in subject-dependent 
experiment but 0.25 in subject-independent experiment, following 
previous research suggestions, and the activation function of all layers 
is unified with the “ELU” function, defined as:
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where α  represents decay factor when x  is negative.

3 Results

3.1 Experiment setups

Our model was trained using a NVIDIA Quadro RTX 8000 GPU 
and implemented in Python using the Tensorflow-Keras library. In the 
DEAP dataset, due to the limited amount of data, all data were used for 
10-fold cross-validation. However, the SEED-V dataset is partitioned 
into train and test sets in an 8 2:  ratio, with results analyzed using the 
Wilcoxon-test for the 10-fold cross-validation on the train set and the 
Delong-test for the test set. Prior to model training, we utilized the 
hyperparameter optimization method offered by the Optuna library 
(Akiba et al., 2019) to explore F1, T , D, and attention heads within the 
ranges of [4, 20], [5, 100], [1, 5], and [4, 20], respectively. To enhance 
the evaluation of ERTNet’s performance, we  conducted subject-
independent experiments that build upon the previous subject-
dependent experiments. We retained identical hyperparameters and 
data processing, and implemented Leave-One-Subject-Out Cross 
Validation (LOSOCV), as previously suggested (Ding et al., 2022).

3.2 Model evaluation

3.2.1 Experiment 1
In this section, we conducted a preliminary screening for the 

model through the hyperparameter optimization method provided 

by Optuna. In the DEAP dataset, the final optimal hyperparameters 
were F1 8= , T = 64 , D = 4 , F2 32= , while for SEED-V, they were 
F1 16= , T =14, D = 4, F1 64= . As the results of the hyperparameter 
optimization of T  were different on the two datasets, we repeated the 
test on the DEAP and SEED-V dataset, confirming the suitability of 
a large convolutional kernel for DEAP and a small for 
SEED-V. Figure  3 shows that the two datasets require dissimilar 
lengths of convolutional kernels to attain higher accuracy. 
Furthermore, Figure 3 demonstrates the impact of different numbers 
of Transformer Blocks, revealing that a single transformer block 
fulfills the requirement, and additional blocks diminish accuracy. In 
the next section, we  use EEGNet (F1 (T ), D) denotes the 
hyperparameters in EEGNet, while the feature extraction part of our 
proposed model shares the same hyperparameters.

3.2.2 Experiment 2

3.2.2.1 Subject-dependent
We compared our model with models based on convolutional 

neural networks, including EEGNet (Lawhern et  al., 2018), 
DeepConvNet, and ShallowConvNet (Schirrmeister et al., 2017), as 
well as the model based on recurrent neural networks CNN-BiLSTM 
(Zhang et al., 2020). The results of the 10-fold cross-validation are 
shown in Figure 4. On the DEAP dataset, our proposed transformer-
based model achieved an accuracy of 74.23% (±2.59%), significantly 
outperforming the other baselines. Moreover, the average AUC value 
of the model is 0.93, indicating the model’s excellent performance on 
the emotion classification task. Conversely, the average accuracy of 
EEGNet (8 (64), 4), CNN-BiLSTM, ShallowConvNet, and 
DeepConvNet were 67.12%, 49.83%, 46.40%, and 48.68%, respectively, 
all of which were lower than our model (p < 0 01. ).

We utilized a 10-fold cross-validation technique to assess the 
model’s performance on the SEED-V dataset. To expedite the model’s 
convergence, we  applied transfer learning by integrating the 
parameters of a tuned EEGNet model’s front-end feature extraction 
section directly into our model for training. The transformer-based 
model achieved an average accuracy of 67.17% (±1.70%) and an 
average AUC value of 0.91 on this dataset, outperforming the other 
four models. EEGNet (16 (14), 4), CNN-BiLSTM, ShallowConvNet, 
and DeepConvNet exhibited average accuracies of 62.84%, 42.91%, 
56.95%, and 44.88%, respectively (p < 0 01. ). On the test set, the 
top-performing transformer-based model attained an accuracy of 
68.19% along with an AUC value of 0.91. Figure  5 depicts the 
confusion matrix and ROC curves providing the exceptional 
execution of our framework for the task of recognizing emotions.

3.2.2.2 Subject-independent
The results of subject-independent testing of the ERTNet model 

against four other models (EEGNet, ShallowConvNet, DeepConvNet, 
and CNN-BiLSTM) on both the DEAP and SEED-V datasets are 
presented in Figure 6. On the DEAP dataset, the average accuracies of 
ERTNet, EEGNet, ShallowConvNet, DeepConvNet, and 
CNN-BiLSTM are 50.33%, 52.14%, 47.84%, 43.37%, and 49.71%, 
respectively. On the SEED-V dataset, the average accuracies of these 
models are 29.41%, 25.07%, 24.66%, 24.96%, and 30.67%, respectively. 
The performance of ERTNet was evaluated and statistical analysis was 
performed using Wilcoxon tests to examine performance differences 
between models on each dataset.
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The analysis of the DEAP dataset revealed significant 
performance differences between ERTNet and DeepConvNet 
( p < 0 01. ) and ShallowConvNet ( p < 0 01. ). However, the 
differences with EEGNet (8 (64), 4; p = 0 24. ) and CNN-BiLSTM 
( p = 0 18. ) were not significant. These results suggest that ERTNet 
outperforms DeepConvNet and ShallowConvNet on the DEAP 
dataset. The SEED-V dataset shows that ERTNet outperforms 
EEGNet (16 (14), 4), DeepConvNet, and ShallowConvNet 
( p < 0 01. ) in terms of performance, while the difference with 
CNN-BiLSTM ( p = 0 50. ) is not statistically significant. These 

results confirm the effectiveness of ERTNet on various datasets, 
particularly when compared to EEGNet, DeepConvNet, 
and ShallowConvNet.

In subject-independent experiment, the ERTNet model 
demonstrated comparable or superior performance to several other 
models, although not to the same extent as in subject-dependent 
experiment. On the DEAP dataset, ERTNet exhibited significant 
performance gains compared to DeepConvNet and ShallowConvNet. 
On the SEED-V dataset, ERTNet demonstrated superior performance 
compared to the other models and was also comparable to 

FIGURE 3

Accuracy with different temporal kernel lengths and number of transformer blocks. To prevent disturbances in the image display, we shifted the curve 
of SEED-V 0.5  units to the right in the right side of the figure.

FIGURE 4

Accuracy of subject-dependent on DEAP and SEED-V.
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CNN-BiLSTM. The findings indicate that ERTNet is an efficient 
neural network model for processing emotional information in 
EEG signals.

3.2.3 Experiment 3
In this section, we demonstrate the interpretability of the model 

trained on the DEAP dataset. We  present a visualization of the 
convolutional kernels utilized in the feature extraction segment of the 
top-performing model from the 10-fold cross-validation procedure 
on the DEAP dataset. The visualization, displayed in Figure 7, aids in 

understanding the model’s concentration on different parts of the EEG 
signal during fitting.

The first row shows the eight time-domain convolution kernels of 
the model’s initial layer, covering all frequency ranges. It should 
be noted that not all convolutional kernels are utilized for beneficial 
information extraction. Temporal convolutional kernels 3, 5, and 7 are 
used to extract the high-frequency (beta and gamma) segments of the 
EEG signal, while convolutional kernel 8 is used to extract the 
mid-frequency (alpha) segment of the EEG signal. Temporal 
convolutional kernels 3, 5, and 7 are used to extract the high-frequency 

FIGURE 5

Results in SEED-V test set. (A) Confusion Matrix, (B) ROC Curves.

FIGURE 6

Accuracy of subject-independent on DEAP and SEED-V.
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(beta and gamma) segments of the EEG signal, while convolutional 
kernel 8 is used to extract the mid-frequency (alpha) segment of the 
EEG signal. These convolutional kernels, working with their 
corresponding spatial convolution kernels in the brain terrain map, 
can divide the information into separate frequency bands and 
decipher the EEG signals on different channels.

The brain topography presented in the four rows corresponds to 
each of the four spatial convolution kernels within the second layer of 
the model. The spatial convolutional kernels for the high-frequency 
signal filters appear to be concentrated in the temporal and prefrontal 
regions, aligning with the understanding that these areas, including 
the amygdala and hippocampus, are crucial in emotion generation 
and recognition (Phelps, 2004). In addition, the production of 
emotions corresponds to higher cognitive activity in humans, with 
accompanying EEG signals primarily observed in the high-frequency 
(beta and gamma) bands, as evident in the temporal convolutional 
kernels. Similar findings have been supported by the study of Gong 
et al. (2023), which utilized visualization of attention masks.

Furthermore, we  conducted an ablation study to evaluate the 
significance of each temporal convolutional kernel for classification 
using the same model trained on the DEAP dataset. Table 1 displays 
the findings, categorized into three sections. The initial section shows 
the outcomes after removing individual convolutional kernels one at 
a time. The second section depicts the results based on each 
convolutional kernel’s frequency domain similarity, while the third 
section showcases the results after not removing any 
convolutional kernel.

The ablation experiments indicate that removing a single temporal 
convolutional kernel has a relatively minor effect on the model when 
it comes to extracting information from EEG signals in the low and 
medium frequency bands, specifically from the three temporal 
convolutional kernels 1, 2, and 8. However, the removal of three 
temporal convolutional kernels—3, 5, and 7—that extract information 
from EEG signals in the high-frequency (beta and gamma) bands, has 
a considerable impact on the model. Interestingly, two Gaussian-like 
convolutional kernels, namely temporal kernels 4 and 6, have a greater 

FIGURE 7

Visualization of temporal and spatial kernels from the trained model on DEAP.

TABLE 1 Performance when temporal kernel(s) was/were removed, here 
all DEAP data is used.

Kernel(s) 
removed

AUC value

Average HAHV LAHV HALV LALV

1 0.9402 0.9244 0.9363 0.9508 0.9472

2 0.9334 0.9210 0.9334 0.9441 0.9266

3 0.8850 0.8970 0.9101 0.8959 0.9095

4 0.8193 0.8054 0.8094 0.8129 0.8129

5 0.8838 0.8861 0.8703 0.8923 0.9220

6 0.7971 0.7780 0.7962 0.8056 0.8053

7 0.8994 0.8848 0.9018 0.9173 0.8980

8 0.9417 0.9338 0.9455 0.9496 0.9492

1, 2 0.9120 0.8943 0.9055 0.9268 0.9115

4, 6 0.7084 0.6796 0.6837 0.7395 0.6803

3, 5, 7 0.7442 0.7197 0.7587 0.7507 0.7697

3, 5, 7, 8 0.7176 0.7127 0.7352 0.7241 0.7349

None 0.9734 0.9635 0.9725 0.9760 0.9796

Bold values indicate cases where kernel(s) is/are removed with minimal impact on the 
model.
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TABLE 2 Comparison between ERTNet and previous work on DEAP (Subject-dependent).

Authors Features Classifier Valence accuracy Arousal accuracy

Koelstra et al. (2012) Multimodal features GNB 57.60% 62.00%

Zhong et al. (2022) Multiscale sample entropy CNN with HMM 83.09% 79.77%

Topic and Russo (2021) Fusion features SVM 76.61% 77.72%

Chao et al. (2019) Multiband feature matrix CapsNet 66.73% 68.28%

Samal and Hashmi (2023) Features based MEEMD SVM 74.3% 78.0%

Agrawal et al. (2023) EEG signals 2D-CNN 66.99% 70.10%

Ding et al. (2022) EEG signals TSception 59.14% 61.57%

Ours EEG signals ERTNet 73.31% 80.99%

Bold values indicate the highest accuracy.

impact on the model than even kernels 3, 5, and 7. We propose a 
hypothesis for this phenomenon: there may still be  some high-
frequency noises in the high-frequency band that have not been fully 
eliminated from the processed data provided by the DEAP dataset. 
During training, the model actively fits temporal convolutional 
kernels similar to the Gaussian kernel to provide a clearer and more 
stable signal input for the subsequent convolutional layers, thus 
enhancing the efficiency and accuracy of feature extraction. 
Supporting this hypothesis is the study conducted by Bertoni, which 
indicates the emergence of Gabor-like kernels (Gaussian kernels being 
a specialized type of Gabor kernel) in the shallow layers of 
convolutional neural networks during their examination of natural 
image research (Bertoni et al., 2021). This hypothesis further extends 
the findings of their research. Figure  8 shows the comparison of 
convolution kernels 3 and 5 with a Gaussian kernel with a standard 
deviation of 14 and a magnitude reduction of 8.3 times.

4 Discussion

The comparison of recognition accuracy using various 
convolutional kernel lengths on the DEAP dataset revealed that a 
kernel length of 64 provided the best performance. Given the 
intricate time-frequency details of EEG signals, the optimal kernel 
length for extracting vital frequency bands through convolution 
seems to be influenced by the input signal preprocessing technique 
and the emotion elicitation approach. The study determined that 

time-domain convolutional layer with larger kernels (length 64) 
performed superiorly in the DEAP dataset, whereas smaller 
kernels (length 14) were more appropriate for the SEED-V dataset. 
This difference in suitability may be  linked to variations in 
preprocessing and emotion elicitation between the two datasets. 
Larger kernels can create improved Gaussian-like kernels, 
resulting in the removal of artifacts present in the DEAP dataset. 
SEED-V utilized a 1–50 Hz bandpass filter, which is wider than 
that used in DEAP’s preprocessing and has superior data quality. 
This makes it more appropriate for small kernels that concentrate 
on high-frequency beta and gamma bands. The connection 
between kernel length and the minimum detectable frequency is 
determined by the formula:

 F Sr Tmin /=

where Fmin means the minimum detectable frequency of the 
model, Sr  means the EEG sampling rate, and T  means the length of 
the temporal convolutional kernel. Tuning the length of the kernel to 
match the primary frequency bands related to emotion in the input 
signal can enhance the removal of artifacts and direct the model 
toward learning time-frequency patterns relevant to emotion.

Our proposed model outperforms CNN and LSTM models. 
Tables 2, 3 also presents the binary classification performance of 
our model for the valence and arousal dimensions, using identical 
hyperparameters for both models. The remaining data in the table 
showcases the performance of previous approaches on DEAP. The 

FIGURE 8

Comparison between Temporal Kernels 3, 5 (blue) and Gaussian kernel (std.=14, amplitude divided by 8.3, orange).
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inclusion of the Transformer module makes possible the full 
consideration of local temporal and spatial features obtained by 
the feature extraction module through its multi-head attention 
mechanism. Current studies on SEED-V primarily focus on 
multimodal emotion recognition, making it impractical to make 
a comparable comparison. Still, this research could provide 
valuable insights into EEG signal processing within multimodal 
signal processing. The feature extraction component of our model 
has the potential to be  applied to sub-models within 
multimodal models.

Taking the DEAP dataset-trained model as an example, we can 
visualize ERTNet’s feature extraction parameters as a signal and brain 
topology map to observe the model’s attention to various frequency 
bands and brain regions of the EEG signals. This also allows us to 
interpret the model’s internal learning. The conclusion is further 
supported by the results of the ablation experiments. In studies that 
aim to improve model interpretability, this often requires that the 
individual frequency bands of the EEG signal be extracted separately 
or that the EEG signal be time-frequency transformed before feeding 
into the model (Maheshwari et al., 2021). In clinical settings, achieving 
high accuracy and interpretability is of utmost importance (Ribeiro 
et al., 2016; Jafari et al., 2023). Black-box CNN models make it difficult 
to test decisions and fail to explain if their intrinsic representations 
correspond with clinical features, leading to doctors’ skepticism and 
hindering translational applications. Therefore, interpretability 
becomes a crucial factor, making ERTNet a more reliable option for 
clinical systems.

However, there is still some limitations in this study. Firstly, the 
utilization of two publicly accessible datasets with diminutive sample 
sizes, confined to controlled laboratory settings, potentially impedes 
the model’s generalizability. Future endeavors should encompass 
validation of the model’s efficacy on extensive medical EEG data and 
the acquisition of empirical data in multifaceted clinical environments 
for comprehensive assessment. Secondly, the exploration of a 
constrained range of parameter configurations in this study indicates 
potential for further refinement of the model’s architecture. The 
precision and interpretability of ERTNet could be augmented through 
the incorporation of ensemble learning techniques (Iyer et al., 2023) 
or the transmutation of domain-specific knowledge into feature 
(Bustios and Garcia Rosa, 2023). Furthermore, despite surpassing 
black-box models in interpretability, the explication process of 
ERTNet is not entirely lucid, necessitating future efforts to fortify its 
interpretability. Lastly, given that the dataset predominantly comprises 
data from a youthful and healthy demographic, it is imperative to 
ascertain the model’s robustness across diverse populations. In 
summation, while this study presents an interpretable and efficacious 

model for EEG emotion recognition tasks, the generalizability of the 
outcomes warrants additional validation, given the data, model, and 
interpretability constraints. This underscores the lifelong learning for 
ERTNet to ensure the model’s efficiency and reliability in complex 
clinical settings.

5 Conclusion

In this study, we  developed an end-to-end transformer-based 
framework for EEG emotion recognition. This framework provides a 
local-to-global receptive field for the model by incorporating the 
transformer module with temporal–spatial convolution, significantly 
enhancing the accuracy of recognizing emotional information in the 
dimensional and discrete model, achieved through targeted tuning of 
the length of convolutional kernels. It shows that our model could 
provide better performance and interpretability in EEG 
emotion recognition.

However, our work still has limitations and we  did not 
perform the same test on more datasets, especially private 
datasets. In future work, we hope to include more datasets for 
testing. Our related code will also be open-sourced on GitHub, 
and researchers are encouraged to test it on other datasets and 
publish their results.
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