12 research outputs found

    Expression and biological significance of c-FLIP in human hepatocellular carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>c-FLIP can be considered as a tumor-progression factor in regard to its anti-apoptotic functions. In the present study, we intended to investigate the expression of c-FLIP in human HCC tissues, and its relation with drug-induced cell apoptosis through the specific inhibition of c-FLIP expression by siRNA in 7721 cells.</p> <p>Methods</p> <p>c-FLIP expression was quantified immunohistochemically in HCC tissues(eighty-six cases), and corresponding noncancerous tissues (fifty-seven cases). Patients with HCC were followed up for cancer recurrence. Then, the c-FLIP gene was silenced with specific siRNA in 7721 HCC cells. c-FLIP expression was detected by RT-PCR, Western Blot and immunocytochemical staining. The cellular viability and cell apoptosis were assayed <it>in vitro </it>with cells treated with doxorubicin.</p> <p>Results</p> <p>Positive immunostaining was detected for c-FLIP in 83.72% (72/86) human HCC tissues, 14.81% (4/27) hepatic cirrhosis, 11.11% (2/18) hepatic hemangioma tissues, and absent in normal hepatic tissues. The overexpression(more than 50%) of c-FLIP in HCC adversely affected the recurrence-free survival. Through c-FLIP gene silencing with siRNA, the expressions of c-FLIP mRNA and protein were remarkably down-regulated in 7721 HCC cells. And doxorubicin showed apparent inhibition on cell proliferations, and induced more apoptosis.</p> <p>Conclusion</p> <p>These results indicate that c-FLIP is frequently expressed in human HCCs, and its overexpression implied a lesser probability of recurrence-free survival. The specific silencing of c-FLIP gene can apparently up-regulate drug-induced HCC cell apoptosis, and may have therapeutic potential for the treatment of human HCC.</p

    Reduced expression of N-Myc downstream-regulated gene 2 in human thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>NDRG</it>2 (N-Myc downstream-regulated gene 2) was initially cloned in our laboratory. Previous results have shown that <it>NDRG</it>2 expressed differentially in normal and cancer tissues. Specifically, <it>NDRG</it>2 mRNA was down-regulated or undetectable in several human cancers, and over-expression of <it>NDRG</it>2 inhibited the proliferation of cancer cells. <it>NDRG</it>2 also exerts important functions in cell differentiation and tumor suppression. However, it remains unclear whether <it>NDRG</it>2 participates in carcinogenesis of the thyroid.</p> <p>Methods</p> <p>In this study, we investigated the expression profile of human <it>NDRG</it>2 in thyroid adenomas and carcinomas, by examining tissues from individuals with thyroid adenomas (n = 40) and carcinomas (n = 35), along with corresponding normal tissues. Immunohistochemistry, quantitative RT-PCR and western blot methods were utilized to determine both the protein and mRNA expression status of Ndrg2 and c-Myc.</p> <p>Results</p> <p>The immunostaining analysis revealed a decrease of Ndrg2 expression in thyroid carcinomas. When comparing adenomas or carcinomas with adjacent normal tissue from the same individual, the mRNA expression level of <it>NDRG</it>2 was significantly decreased in thyroid carcinoma tissues, while there was little difference in adenoma tissues. This differential expression was confirmed at the protein level by western blotting. However, there were no significant correlations of <it>NDRG</it>2 expression with gender, age, different histotypes of thyroid cancers or distant metastases.</p> <p>Conclusion</p> <p>Our data indicates that <it>NDRG</it>2 may participate in thyroid carcinogenesis. This finding provides novel insight into the important role of <it>NDRG2 </it>in the development of thyroid carcinomas. Future studies are needed to address whether the down-regulation of <it>NDRG</it>2 is a cause or a consequence of the progression from a normal thyroid to a carcinoma.</p

    Investigation of lignocellulolytic enzymes during different growth phases of <i>Ganoderma lucidum</i> strain G0119 using genomic, transcriptomic and secretomic analyses

    No full text
    <div><p><i>Ganoderma lucidum</i> is a medicinal mushroom that is well known for its ability to enhance human health, and products made from this fungus have been highly profitable. The substrate-degrading ability of <i>G</i>. <i>lucidum</i> could be related to its growth. CAZy proteins were more abundant in its genome than in the other white rot fungi models. Among these CAZy proteins, changes in lignocellulolytic enzymes during growth have not been well studied. Using genomic, transcriptomic and secretomic analyses, this study focuses on the lignocellulolytic enzymes of <i>G</i>. <i>lucidum</i> strain G0119 to determine which of these degradative enzymes contribute to its growth. From the genome sequencing data, genes belonging to CAZy protein families, especially genes involved in lignocellulose degradation, were investigated. The gene expression, protein abundance and enzymatic activity of lignocellulolytic enzymes in mycelia over a growth cycle were analysed. The overall expression cellulase was higher than that of hemicellulase and lignin-modifying enzymes, particularly during the development of fruiting bodies. The cellulase and hemicellulase abundances and activities increased after the fruiting bodies matured, when basidiospores were produced in massive quantities till the end of the growth cycle. Additionally, the protein abundances of the lignin-modifying enzymes and the expression of their corresponding genes, including laccases and lignin-degrading heme peroxidases, were highest when the mycelia fully spread in the compost bag. Type I cellobiohydrolase was observed to be the most abundant extracellular lignocellulolytic enzyme produced by the <i>G</i>. <i>lucidum</i> strain G0119. The AA2 family haem peroxidases were the dominant lignin-modifying enzyme expressed during the mycelial growth phase, and several laccases might play roles during the formation of the primordium. This study provides insight into the changes in the lignocellulose degradation ability of <i>G</i>. <i>lucidum</i> during its growth and will facilitate the discovery of new approaches to accelerate the growth of <i>G</i>. <i>lucidum</i> in culture.</p></div

    Monosaccharide compositions of cellulose and hemicellulose in the composts during the 5 <i>G</i>. <i>lucidum</i> G0119 growth phases.

    No full text
    <p>Monosaccharide compositions of cellulose and hemicellulose in the composts during the 5 <i>G</i>. <i>lucidum</i> G0119 growth phases.</p

    Lignocellulose compostion changes in the compost during the 5 <i>G</i>. <i>lucidum</i> G0119 growth phases.

    No full text
    <p>Lignocellulose compostion changes in the compost during the 5 <i>G</i>. <i>lucidum</i> G0119 growth phases.</p

    Differences in the abundance of lignocellulolytic enzymes among <i>G</i>. <i>lucidum</i> G0119 growth phases.

    No full text
    <p>Differences in the abundance of lignocellulolytic enzymes among <i>G</i>. <i>lucidum</i> G0119 growth phases.</p

    Influence of More Than 5 Years of Continuous Exposure to Antipsychotics on Cerebral Functional Connectivity of Chronic Schizophrenia

    No full text
    Objective: To explore the effect of long-term antipsychotics use on the strength of functional connectivity (FC) in the brains of patients with chronic schizophrenia. Method: We collected resting-state functional magnetic resonance imaging from 15 patients with continuously treated chronic schizophrenia (TCS), 19 patients with minimally TCS (MTCS), and 20 healthy controls (HCs). Then, we evaluated and compared the whole-brain FC strength (FCS; including full-range, short-range, and long-range FCS) among patients with TCS, MTCS, and HCs. Results: Patients with TCS and MTCS showed reduced full-/short-range FC compared with the HCs. No significant differences in the whole-brain FCS (including full-range, short-range, and long-range FCS) or clinical characteristics were identified between patients with TCS and MTCS. Additionally, the FCS in the right fusiform gyrus, right inferior temporal gyrus, and right inferior occipital gyrus negatively correlated with the duration of illness and positively correlated with onset age across all patients with chronic schizophrenia. Conclusions: Regardless of the long-term use of antipsychotics, patients with chronic schizophrenia show decreased FC compared with healthy individuals. For some patients with chronic schizophrenia, the influence of long-term and minimal/short-term antipsychotic exposure on resting-state FC was similar. The decreased full- and short-range FCS in the right fusiform gyrus, right inferior temporal gyrus, and right inferior occipital gyrus may be an ongoing pathological process that is not altered by antipsychotic interventions in patients with chronic schizophrenia. Large-sample, long-term follow-up studies are still needed for further exploration.</p
    corecore