309 research outputs found

    Future Frontiers in Small Molecule Inhibitors of Protein-Protein Interactions

    Get PDF
    Protein-protein interactions (PPIs) are ubiquitous in essential biological processes such as cell proliferation and differentiation, host-pathogen interactions, and signal transduction pathways [1]. Pioneering advances in the field of interactomics have uncovered new net-works of protein interactions within cells, with esti-mates for the size of the interactome ranging up to 650,000 PPIs [2]. However, targeting PPIs has histori-cally been considered to be a particularly challenging task due to their typically large size (>1,500 Å) and amorphous nature that lack well-defined crevices for recognition by small molecules. Not surprisingly, the pharmaceutical landscape over the last century has been dominated by programs for small molecule in-hibitors of enzymes (particularly kinases), G-protein-coupled receptors, protein transporters and ion chan-nels that account for the majority of known drugs

    Ancestry of motor innervation to pectoral fin and forelimb

    Get PDF
    © Macmillan Publishers Limited, 2010. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. The definitive version was published in Nature Communications 1 (2010): 49, doi:10.1038/ncomms1045.Motor innervation to the tetrapod forelimb and fish pectoral fin is assumed to share a conserved spinal cord origin, despite major structural and functional innovations of the appendage during the vertebrate water-to-land transition. In this paper, we present anatomical and embryological evidence showing that pectoral motoneurons also originate in the hindbrain among ray-finned fish. New and previous data for lobe-finned fish, a group that includes tetrapods, and more basal cartilaginous fish showed pectoral innervation that was consistent with a hindbrain-spinal origin of motoneurons. Together, these findings support a hindbrain–spinal phenotype as the ancestral vertebrate condition that originated as a postural adaptation for pectoral control of head orientation. A phylogenetic analysis indicated that Hox gene modules were shared in fish and tetrapod pectoral systems. We propose that evolutionary shifts in Hox gene expression along the body axis provided a transcriptional mechanism allowing eventual decoupling of pectoral motoneurons from the hindbrain much like their target appendage gained independence from the head.Th is work was supported by the National Institutes of Health and National Science Foundation

    Mosaic hoxb4a Neuronal Pleiotropism in Zebrafish Caudal Hindbrain

    Get PDF
    To better understand how individual genes and experience influence behavior, the role of a single homeotic unit, hoxb4a, was comprehensively analyzed in vivo by clonal and retrograde fluorescent labeling of caudal hindbrain neurons in a zebrafish enhancer-trap YFP line. A quantitative spatiotemporal neuronal atlas showed hoxb4a activity to be highly variable and mosaic in rhombomere 7–8 reticular, motoneuronal and precerebellar nuclei with expression decreasing differentially in all subgroups through juvenile stages. The extensive Hox mosaicism and widespread pleiotropism demonstrate that the same transcriptional protein plays a role in the development of circuits that drive behaviors from autonomic through motor function including cerebellar regulation. We propose that the continuous presence of hoxb4a positive neurons may provide a developmental plasticity for behavior-specific circuits to accommodate experience- and growth-related changes. Hence, the ubiquitous hoxb4a pleitropism and modularity likely offer an adaptable transcriptional element for circuit modification during both growth and evolution

    Carboxypeptidase A6 in Zebrafish Development and Implications for VIth Cranial Nerve Pathfinding

    Get PDF
    Carboxypeptidase A6 (CPA6) is an extracellular protease that cleaves carboxy-terminal hydrophobic amino acids and has been implicated in the defective innervation of the lateral rectus muscle by the VIth cranial nerve in Duane syndrome. In order to investigate the role of CPA6 in development, in particular its potential role in axon guidance, the zebrafish ortholog was identified and cloned. Zebrafish CPA6 was secreted and interacted with the extracellular matrix where it had a neutral pH optimum and specificity for C-terminal hydrophobic amino acids. Transient mRNA expression was found in newly formed somites, pectoral fin buds, the stomodeum and a conspicuous condensation posterior to the eye. Markers showed this tissue was not myogenic in nature. Rather, the CPA6 localization overlapped with a chondrogenic site which subsequently forms the walls of a myodome surrounding the lateral rectus muscle. No other zebrafish CPA gene exhibited a similar expression profile. Morpholino-mediated knockdown of CPA6 combined with retrograde labeling and horizontal eye movement analyses demonstrated that deficiency of CPA6 alone did not affect either VIth nerve development or function in the zebrafish. We suggest that mutations in other genes and/or enhancer elements, together with defective CPA6 expression, may be required for altered VIth nerve pathfinding. If mutations in CPA6 contribute to Duane syndrome, our results also suggest that Duane syndrome can be a chondrogenic rather than a myogenic or neurogenic developmental disorder

    Gold-catalyzed cycloisomerization and Diels-Alder reaction of 1,4,9-Dienyne Esters to 3 a,6-Methanoisoindole Esters with pro-inflammatory cytokine antagonist activity

    Get PDF
    A synthetic method to prepare 3a,6-methanoisoindole esters efficiently by gold(I)-catalyzed tandem 1,2-acyloxy migration/Nazarov cyclization followed by Diels–Alder reaction of 1,4,9-dienyne esters is described. We also report the ability of one example to inhibit binding of tumor necrosis factor-α (TNF-α) to the tumor necrosis factor receptor 1 (TNFR1) site and TNF-α-induced nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activation in cell at a half-maximal inhibitory concentration (IC50) value of 6.6 μM. Along with this is a study showing the isoindolyl derivative to exhibit low toxicity toward human hepatocellular liver carcinoma (HepG2) cells and its possible mode of activity based on molecular modeling analysis

    Evaluation of Cinnamomum osmophloeum

    Get PDF
    Cinnamomum osmophloeum Kanehira belongs to the Lauraceae family of Taiwan’s endemic plants. In this study, C. osmophloeum Kanehira extract has shown inhibition of tyrosinase activity on B16-F10 cellular system first. Whether extracts inhibited mushroom tyrosinase activity was tested, and a considerable inhibition of mushroom tyrosinase activity by in vitro assays was presented. Animal experiments of C. osmophloeum Kanehira were carried out by observing animal wound repair, and the extracts had greater wound healing power than the vehicle control group (petroleum jelly with 8% DMSO, w/v). In addition, the antioxidant capacity of C. osmophloeum Kanehira extracts in vitro was evaluated. We measured C. osmophloeum Kanehira extract’s free radical scavenging capability, metal chelating, and reduction power, such as biochemical activity analysis. The results showed that a high concentration of C. osmophloeum Kanehira extract had a significant scavenging capability of free radical, a minor effect of chelating ability, and moderate reducing power. Further exploration of the possible physiological mechanisms and the ingredient components of skincare product for skin-whitening, wound repair, or antioxidative agents are to be done

    Astragalus Polysaccharide RAP Selectively Attenuates Paclitaxel-Induced Cytotoxicity Toward RAW 264.7 Cells by Reversing Cell Cycle Arrest and Apoptosis

    Get PDF
    Purpose: The purpose of this study was to determine if an Astragalus polysaccharide (RAP) can protect immune cells from the toxic side effects of paclitaxel (Taxol), a powerful anti-tumor drug whose equally powerful side effects limit its clinical use.Methods: We hypothesized that RAP can reduce the toxic effects induced by Taxol. To test this hypothesis, we conducted a series of studies in vivo and in vitro. First, we confirmed RAP’s effects in vivo utilizing BALB/c mice inoculated with 4T1 mouse breast cancer cells as the tumor model. Mice were treated with RAP and/or Taxol, and the differences in the life spans were recorded. Second, a co-culture cell model was used to study the protective effect of RAP on cells vis-a-vis Taxol. The cell cycle and apoptosis of RAW 264.7 cells that were treated with RAP with/without Taxol were checked by flow cytometry and Hoechst staining. Proteins involved in the cell cycle and apoptosis were also tested by Western blot to reveal the probable mechanism.Results: RAP prolonged the life span of tumor-bearing mice treated with Taxol. The in vitro experiments showed that Taxol suppressed the proliferation of RAW 264.7 cells while RAP protected the RAW 264.7 cells from Taxol-induced suppression. The protection is selective because RAP had no effect on 4T1 cells. Furthermore, Taxol clearly led to cell cycle arrest mainly at the G2/M phase and generated cytotoxicity against RAW 264.7 cells, while RAP blocked cell cycle arrest and protected cells from apoptosis. Taxol up-regulated the protein levels of P-H2A, PARP, Chk1, p53, and p21 and down-regulated Bcl-Xl and Mcl-1, and RAP reversed the expression of all these proteins.Conclusion: These results suggested that RAP can protect immune cells from Taxol-induced toxicity, by changing the cell cycle and apoptosis
    corecore