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 Motor innervation to the tetrapod forelimb and fi sh pectoral fi n is assumed to share a conserved 

spinal cord origin, despite major structural and functional innovations of the appendage during 

the vertebrate water-to-land transition. In this paper, we present anatomical and embryological 

evidence showing that pectoral motoneurons also originate in the hindbrain among ray-fi nned 

fi sh. New and previous data for lobe-fi nned fi sh, a group that includes tetrapods, and more 

basal cartilaginous fi sh showed pectoral innervation that was consistent with a hindbrain-spinal 

origin of motoneurons. Together, these fi ndings support a hindbrain – spinal phenotype as the 

ancestral vertebrate condition that originated as a postural adaptation for pectoral control of 

head orientation. A phylogenetic analysis indicated that  Hox  gene modules were shared in fi sh 

and tetrapod pectoral systems. We propose that evolutionary shifts in  Hox  gene expression along 

the body axis provided a transcriptional mechanism allowing eventual decoupling of pectoral 

motoneurons from the hindbrain much like their target appendage gained independence from 

the head.         
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 B
ehavioural innovations associated with vertebrate locomotion 
have depended on functional transformations of the anterior 
paired appendages. Th ese range from the pectoral fi n ’ s role in 

hydrodynamic mechanisms of balance and swimming to the fore-
limb ’ s contribution to weight-bearing locomotion 1 . Although the 
ancestry of these appendages has received much attention 2,3 , the 
evolutionary origin of the corresponding motor circuitry remains 
largely unexplored. Th e spinal cord position of tetrapod forelimb 
circuitry is oft en presented as the ancestral condition of vertebrates 
and is presumed to be the location for the corresponding pectoral 
circuit in bony fi sh 4 – 7 . However, analyses of fi sh pectoral nerves 
suggest an alternative organization. Among both main clades of 
bony vertebrates, sarcopterygian (lobe-fi nned) and actinoptery-
gian (ray-fi nned) fi sh 8 , adult pectoral fi ns are innervated by spinal 
nerves, as well as by nerves that exit the posterior, occipital region 
of the skull 9 – 12 . Th is innervation pattern suggests that pectoral fi n 
motoneurons might originate from both the brain and spinal cord 
instead of from just the spinal cord. However, nerve trajectory alone 
cannot be used to identify the ancestral pattern of motor innervation 
to pectoral appendages because fusion of anterior vertebrae with the 
occiput during growth can substantially modify the occipital skull 13 . 
To directly test the hypothesis that pectoral motoneurons have 
evolutionary and developmental origins from both the hind-
brain and spinal cord, we mapped their location in the developing 
neuroepithelium of actinopterygian fi sh. 

 Actinopterygians were the main focus of our investigation 
because, unlike sarcopterygians, the embryos of several species 
were readily available for the comparative anatomical and molecu-
lar analyses essential to determining the ancestry of pectoral neu-
rons and innervation. We included a basal actinopterygian, the 
acipenseriform  Polydon spathula  (paddlefi sh), and several species 
from the more derived, species-rich group of teleosts 8 . Th e teleosts 
chosen were fi ve key study species from three distantly related 
groups, widely investigated at molecular, neural and behavioural 
levels of analysis 14 : cypriniforms (zebrafi sh  Danio rerio , gold-
fi sh  Carassius auratus ), salmoniforms (salmon  Salmo salar,  trout 
 Salvelinus fontinalis ) and batrachoidiforms (midshipman  Porich-
thys notatus ). Zebrafi sh included a  hoxb4a  enhancer trap line 15  
expressing a genetic marker demarcating the hindbrain – spinal 
cord boundary 16 . Using this comparative developmental strategy, 
we precisely aligned the axial position of developing pectoral 
motoneurons with other brain nuclei, myoto mes and periph-
eral nerves. We demonstrate that pectoral motoneurons exhibit a 
conserved pattern of dual origin in both the hindbrain and spinal 
cord with no migration throughout development. Together with 
new and previous evidence for occipital and spinal innervation 
of pectoral fi ns in sarcopterygian (lungfi shes and coela canth) and 
more basal cartilaginous (chimaera) fi sh, the results indicate that 
this pattern of pectoral innervation is the primitive con  dition for 
jawed verte brates. Pectoral motor control centred at a hindbrain –
 spinal location was likely a novel adaptation for head orientation and 
swimming manoeuvres via the occipital – pectoral skeletal connec-
tion in primitive fi sh, including those that gave rise to tetrapods.  

 Results  
  Location of embryonic pectoral motoneurons   .   Th e pectoral fi n is 
innervated by a plexus of nerves, members of which are designated 
as either occipital (Oc) or spinal (Sp) depending on the location 
of their roots relative to the cranio – vertebral interface 9 – 12 . In all 
four actinopterygians studied, including midshipman ( Fig. 1a ) and 
zebrafi sh ( Fig. 1b ), the anterior most pectoral nerve emerged from 
the skull through an occipital foramen or the foramen magnum 
(for example,  Fig. 1c,d ;  Supplementary Figs S1 – S2 ). Although 
the innervation pattern was grossly conserved, the substantial 
modifi cations in the occipital skull produced by its fusion with parts 
of anterior vertebrae 13  precluded a conclusive comparison between 

species. We found, however, that alignment of the fi n bud, myotomes 
and neuroepithelium was strikingly similar at early fi n bud stages 
of development across all four species ( Fig. 1e ;  Supplementary 
Fig. S3 ). Th is fi nding allowed us to study pectoral innervation at 
comparable embryonic stages across taxa, independent of species-
specifi c skeletal modifi cations during subsequent growth. 

 Pectoral motoneurons were visualized by injecting a saturated solu-
tion of fl uorescent lipophilic dye (DiD) into the fi n bud that was incor-
porated into individual axons and diff used along the membrane to 
label the cell body. Subsequent confocal imaging revealed a consistent 
dual hindbrain – spinal origin of pectoral motoneurons in actinoptery-
gians. Embryonic pectoral motor nuclei always extended as a column 
between myotomes (M) 2 – 3 and 5 – 6, with separate nerve roots pro-
jecting through each successive myotome, starting invariantly with 

       Figure 1    |         Occipital region in actinopterygian fi sh. ( a ) Cranio – vertebral 

junction (asterisk) in a juvenile midshipman stained with alcian blue 

and alizarin red. ( b ) Hindbrain – spinal cord boundary (yellow hatching) 

demarcated in the zebrafi sh  hoxb4a  enhancer trap line. ( c ) Pectoral fi n 

innervation in juvenile midshipman. ( d ) Schematic drawing of  c  showing 

occipital nerves (Oc, red, orange and brown in  d ) exiting through occipital 

foramen (OcF) located anterior to the cranio – vertebral junction, and spinal 

nerves (Sp, black in  d ) exiting through vertebrae (V). ( e ) Embryonic alignment 

of caudal hindbrain, fourth ventricle, otic vesicle (OV) and myotomes (M) 

(includes blue lipophilic dye injection in fi n buds; midshipman fi sh). The 

location of pectoral motoneurons is also indicated. NE, neuroepithelium. 

Images are dorsal ( a ,  b ,  e ) and ventral ( c ,  d ) views with anterior to the left. 

Scale bars are 1   cm ( a ), 200    μ m ( b ), 500    μ m ( c ,  d ) and 100    μ m ( e ).  
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M2 ( Fig. 2a – d ). Location of the embryonic cranio – vertebral 17  and 
hindbrain – spinal 16  junctions between M3 and 4 showed the pectoral 
column to be in both the caudal hindbrain and rostral spinal cord with 
the fi n innervated by Oc and Sp nerves ( Fig. 2a – d ;  Supplementary 
Movie 1 ). Taken together, our results indicate that basal and derived 
actino pterygians share a conserved blueprint, with a hindbrain – 
spinal pectoral motor nucleus innervating the fi n via both Oc and 
Sp nerves.   

  Alignment with central and peripheral landmarks   .   Precise, three-
dimensional neuronal maps were obtained by aligning hindbrain 
nuclei with myotomes and peripheral nerves, complemented in 
transgenic zebrafi sh lines by genetic markers that label motoneu-
ronal pools and demarcate the hindbrain – spinal boundary between 
M3 and 4. We fi rst identifi ed all hindbrain motoneurons exiting 
via Oc nerves by fl uorescent labelling from the three most ante-
rior  myotomes, M1 – 3. In all cases, labelled occipital motoneurons 
formed a ventral  column that began about one myotomal segment 
anterior to the pectoral column ( Fig. 2e – h ). Th e occipital column 
included all  posterior hindbrain neurons projecting through Oc 
roots  innervating pectoral fi n, hypobranchial and axial (M1 – 3) 
muscles 10  ( summarized in  Figure 2i ). Th is overlapping occipital pec-
toral motoneuronal pattern further supported a generic blueprint of 
hindbrain – spinal pectoral innervation in actinopterygians. 

 We next aligned the pectoral motoneurons with other central 
nuclei using transgenic zebrafi sh lines. In the  hoxb4a  enhancer 
trap background ( Figs 1b and 3a ), a  gata-2  promotor-driven YFP 
was inserted 3-kb downstream of the endogenous  hoxb4a  gene 15 . 
Many neurons from rhombomeres (r) 7 – 8 are genetically labelled 
with YFP, refl ecting the presence of  hoxb4a  enhancer activity 16  
( Fig. 3a,b ). Th e retrogradely labelled pectoral motor column was 
located in posterior r8 and extended into the adjacent spinal cord 
( Fig. 3c ). Notably, the retrogradely labelled occipital motor column 
extended further rostral than pectoral motoneurons into the mid-
dle of r8 ( Fig. 3d ). Double labelling from the fi n and cerebellum 
in an  islet1- GFP transgenic background 18  showed the hindbrain 
pectoral motoneurons to be located immediately caudal to precere-
bellar neurons (inferior olive / IO and area II / AII) in the middle of r8 16  
( Fig. 3e – g ;  Supplementary Movie 2 ). A similar alignment of precer-
ebellar and pectoral neurons in other teleosts studied (midshipman, 
trout and goldfi sh;  Supplementary Fig. S4 ) strongly supported a 
common hindbrain neuronal map for actinopterygians. Occipital 
and pectoral motoneurons formed a single column (Oc / Pec) that was 
directly ventral to the posterior half of the vagal (X) motor nucleus 
in the caudal hindbrain and extended into the anterior spinal cord 
( Fig. 3h ; also see  Fig. 2e – h ). Neuronal mapping with genetically and 
retrogradely labelled neurons thus showed pectoral motoneurons 
distributed across the hindbrain – spinal cord boundary and pre-
cisely positioned them with respect to other hindbrain subgroups 
(summarized in  Figure 3i ).   

   In situ  origination of hindbrain pectoral motoneurons   .   Th e dual 
hindbrain – spinal origin of pectoral motoneurons was explicitly 
demonstrated using the photoconvertible protein kaede 19  to trace 
the fate of the neuroepithelium in the hindbrain and anterior spinal 
cord, starting from early neurogenesis ( Fig. 4a – e ;  Supplementary 
Movie 3 ). Kaede in both neuroepithelium and somites at the level of 
somites 4 – 5 was photoconverted from green to red at 12   h postferti-
lization (hpf; early neural keel stage 20 ;  Fig. 4a,b ) or at 18   hpf (neural 
rod stage 20 ). Subsequent confocal analysis at 2 days postfertilization 
(dpf) showed that red kaede-labelled neurons remained at the level 
of M4 – 5 ( Fig. 4c ). Neurons located maximally 2 – 3 cell diameters away 
from the photoconverted area were occasionally observed (arrows, 
 Fig. 4c ). Retrograde labelling showed that pectoral motoneurons 
in the hindbrain at the level of M3 ( Fig. 4c,d ) did not contain the 
red converted version of kaede, unlike those in the anterior spinal 

cord ( Fig. 4c,e ). Pectoral motoneurons exhibited minimal, if any, 
anterior –  posterior migration, regardless of whether the  photo-
 conversion was  performed either at 12   hpf ( n     =    11) or 18   hpf ( n     =    10), 
or at the level of M3 – 4 ( n     =    2), M4 – 5 ( n     =    21) or M5 – 6 ( n     =    7).   

  Ontogeny of pectoral motoneurons   .   Th e location of pectoral 
motoneurons was further examined throughout early development 

        Figure 2    |         Embryonic alignment of pectoral and occipital motoneurons 
with nerves and myotomes in basal and derived actinopterygians. 
( a  –  d ) Location of pectoral motoneurons and nerves in actinopterygians 

revealed by lipophilic dye labelling from fi n buds. The pectoral motor column 

began at the level of myotomes (M) 2 – 3 in all species studied (vertical 

hatching marks hindbrain – spinal boundary; also see  Figure 1b,e ). ( e  –  h ) Double 

labelling with fl uorescent dextrans from fi n buds and M1 – 3 showed that the 

occipital motor column began one myotomal segment anterior to pectoral 

motoneurons. Horizontal hatching marks midline in  f  –  h . ( i ) Alignment of 

myotomes, nerves and motoneurons (pectoral/red and occipital/grey) 

with phylogenetic relationships of actinopterygians studied here (right). 

Paddlefi sh innervation pattern was deduced from juvenile gross anatomy 

( Supplementary Fig. S1 – S2 ) as individual roots were not clearly visualized 

using retrograde labelling. All images are dorsal views with anterior to the left. 

Scale bars are 50    μ m. Specimen stages:  a  (10 days postfertilization (dpf) /

  ~ 5.5   mm),  b  (2   dpf /  ~ 3   mm),  c  (100   dpf /  ~ 10   mm),  d  (9   dpf /  ~ 13   mm), 

 e  (18   dpf /  ~ 11   mm),  f  (4   dpf /  ~ 4   mm),  g  (115   dpf /  ~ 12   mm),  h  (11   dpf /  ~ 16   mm).  
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by alignment in the  hoxb4a  enhancer trap background ( Fig. 4f – k ). 
During 2 – 20   dpf, when both pectoral musculature and  innervation 
attain an adult confi guration 21,22 ,  pectoral motoneurons increased 
in number in both hindbrain and spinal cord, splitting from a 
single motor pool into ventrolateral and dorsomedial columns 
( Fig. 4f,i ). Th eir relative position to the  hoxb4a -YFP domain 
indicated that pectoral motoneurons originated from, and 
were maintained, across the hindbrain – spinal cord boundary 
( Fig. 4g,h,j,k ). On the basis of axonal trajectory, there was no 
evidence for pectoral motoneuron migration along the anterior –
 posterior axis ( Fig. 4i – k ). Taken together with the kaede experi-
ments, these data demon strated that pectoral motoneurons did not 
exhibit any longitudinal migration from early neurogenesis through 

later development, similar to postmitotic spinal motoneurons in 
tetrapods 23 . Th us, pectoral motoneurons originated and remained 
across the hindbrain – spinal boundary in actinopterygian fi sh 23 .   

  Pectoral innervation in Chondrichthyes and Dipnoi   .   To facilitate 
comparisons with more readily available juvenile / adult sarcoptery-
gian and the even more primitive cartilaginous fi sh / Chondrich-
thyes 8 , we investigated pectoral innervation in two lungfi sh / Dipnoi 
species ( Protopterus dolloi  and  Lepidosiren paradoxa ) and ratfi sh /
 Chimaeri formes ( Hydrolagus colliei ). Ratfi sh had four Oc nerves 
(Oc1 – 4) that originated from the hindbrain as ventral roots directly 
behind the vagus nerve (X). All four nerve roots immediately com-
bined into one nerve ( Fig. 5a ) that branched into hypobranchial 
and pectoral nerves at the level of the pectoral girdle (inset,  Fig. 5a ). 
Th e pectoral nerve immediately joined Sp nerves 1 – 3 to form a 
plexus (inset,  Fig. 5a ) that innervated the pectoral fi n along with 
11 separate Sp nerve branches ( Fig. 5a ). Lungfi sh had three Oc 
nerves ( Fig. 5b ;  Supplementary Fig. S5 ), with the most posterior 
root (Oc3) emerging from the caudal hindbrain at a level near the 
end of the fourth ventricle ( Fig. 5b ). Th e Oc3 dorsal and ventral 
roots exited via two separate cranial foramina and fused into a single 
nerve immediately outside the skull ( Supplementary Fig. S5a ). Oc3 
later merged with Sp1 – 3, forming a single pectoral nerve ( Fig. 5 ; 
 Supplementary Fig. S5 ). In summary, cartilaginous and sarcoptery-
gian fi sh exhibited Oc and Sp innervation of the pectoral fi n, similar 
to actinopterygians, supporting the hypothesis that a dual hindbrain – 
spinal origin of pectoral motoneurons is an ances tral trait for jawed 
(cartilaginous and bony) vertebrates (summary,  Fig. 6a ).    

 Discussion 
 Th e conserved pectoral innervation pattern among jawed fi sh shown 
here, which consists of motoneurons and nerves originating from 
both the hindbrain and the spinal cord, diff ers notably from the 
spinal-only innervation in tetrapods. Our work in basal and derived 
actinopterygians supports the hypothesis that a dual hindbrain – 
spinal origin for pectoral motoneurons in fi sh evolved into a spinal-
only origin for forelimb motoneurons in tetrapods. Th is proposal is 
corroborated by new and previous evidence of pectoral innervation 

       Figure 3    |         Embryonic alignment of precerebellar, pectoral and other 
hindbrain neurons in transgenic zebrafi sh. ( a ) Rhombomere (r) 7 – 8 

YFP expression in  hoxb4a  enhancer trap line. ( b ) Reticular (labelled from 

the spinal cord; red) and YFP (green) neurons showed hindbrain – spinal 

cord boundary between myotomes (M) 3 – 4. ( c ) Half of the pectoral 

column (labelled from fi n bud; red) was within the hindbrain. ( d ) Occipital 

motor column (labelled from M1 – 3 / occipital) extended to mid r8, one 

segment rostral to pectoral motoneurons. ( e  –  g ) Dorsal composites 

( e ) and selected confocal planes ( f ,  g ) of pectoral (labelled from fi n buds; 

red), inferior olive (IO) and Area II (AII) (labelled from the cerebellum; 

magenta) neurons in  islet -GFP background (green), showing the relative 

position of pectoral motoneurons with major neuronal subgroups. GFP in 

this line is expressed in all hindbrain motoneurons, except abducens and 

pectoral. ( h ) Vagal (X) and more ventral occipital (Oc) motor columns that 

extended from spinal cord into the hindbrain (also see  f ,  g ). ( i ) Alignment 

of pectoral motoneurons (Pec) with other neuronal and anatomical 

landmarks. Pectoral motoneurons in zebrafi sh were located across the 

hindbrain – spinal cord boundary at the level of M3 – 5 (see  Figure 2 ). Hindbrain 

motoneurons are located immediately caudal to the inferior olive, below 

the vagal nucleus (X) and hindbrain commissure (HB com). They are part 

of the occipital motor column (Oc Mns) at the level of two fi bre tracts, the 

medial longitudinal fasciculus (mlf) and the lateral longitudinal fasciculus 

(llf). Other abbreviations: Mi2, Mi3 and Ca, reticulospinal neurons 53 . 

Images are dorsal ( b ,  c ,  e  –  g ,  i ), ventral ( d ) and lateral ( a ,  h ) views with 

anterior to the left. Scale bars are 200    μ m ( a ), 50    μ m ( b  –  h ). Specimen 

stages:  a ,  c ,  d  (4   dpf),  b  (2   dpf),  e  –  h  (5   dpf).  
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from hindbrain / Oc and Sp nerves in lobe-fi nned and cartilaginous 
fi sh, implying that the pectoral motoneuron pool, similar to its 
target appendage, shift ed caudally along the anterior – posterior axis 
during the fi n-to-limb transition 24 . 

 Our embryonic data showed pectoral motoneurons located in 
the hindbrain of four actinopterygian species ( Figs 2 – 4 ). Lineage 
tracing showed that these neurons originated in embryonic sites in 
both the hindbrain and spinal cord that were maintained through-
out ontogeny in zebrafi sh ( Figs 3 and 4 ). Th is embryonic blueprint 
was conserved among basal and derived actinopterygians ( Fig. 2 ) 
and gave rise to adult innervation consisting of two Oc and various 
numbers (1 – 5) of Sp nerves ( Figs 1 and 2 ;  Supplementary Figs S1 –
 S2 ). We conclude that a dual hindbrain – spinal origin is the primi-
tive trait for actinopterygian fi sh ( Fig. 6a ). 

 Sarcopterygians, the sister group of actinopterygians, also exhi-
bited an occipital-spinal pectoral nerve pattern. As in the living 
coelacanth /  Latimeria  25,26 , pectoral innervation in two species 
of lungfi sh / Dipnoi included an Oc nerve (Oc3) that originated 
from the hindbrain ( Fig. 5 ;  Supplementary Fig. S5 ). Similar to 
actinopterygians, the spinal contribution to pectoral innervation 
varied among sarcopterygians (11 in  Latimeria  versus 3 in  P. dolloi ). 
Together with our embryological results, we conclude that a hind-
brain contribution to pectoral appendage innervation is the primi-
tive condition for bony fi sh, including the sarcopterygians that gave 
rise to tetrapods ( Fig. 6a ). 

 We expanded our analysis to the most basal group of living 
jawed fi sh, Chondrichthyes, which include two subclasses, holo-
cephalans such as the ratfi sh studied here and elasmobranchs 

           Figure 4    |         Origin and maintenance of pectoral motoneurons across the hindbrain – spinal cord boundary. ( a ) Future hindbrain – spinal cord region in a 12   h 

postfertilization (hpf) embryo showing somites 1 – 6. ( b ) Transiently expressed kaede protein was photoconverted from green to red at the level of somites 

4 – 5. Yellow dashed line in ( a ) marks the area of photoconversion using a laser of 405   nm. ( c ) The same embryo at 2 days postfertilization (dpf) showed 

minimal, if any, anterior – posterior migration, with labelled neurons remaining tightly clustered at the level of myotomes (M) 4 – 5. Arrows point to neurons 

that were displaced 2 – 3 cell diameters posteriorly. ( d ,  e ) High magnifi cation single plane images showed photoconverted kaede to be absent in pectoral 

motoneurons (white) at the level of M3 ( d ), but present in those at the level of M4 ( e ). ( f  –  k ) Ontogeny of pectoral motoneurons. At 2   dpf, pectoral 

motoneurons were labelled with lipophilic dye from fi n bud (red) and appeared as a single column at the level of M3 – 4 ( f ) where they overlapped 

with the  hoxb4a -YFP (green) expression domain ( g , shown at a higher magnifi cation in  h ). At 20   dpf, pectoral motoneurons increased in number and 

developed into paired ventrolateral and dorsomedial columns ( i ). The motoneurons remained across the hindbrain – spinal cord boundary (yellow dashed 

line in  j ) demarcated by YFP expression (shown at a higher magnifi cation in  k ) and exhibited a progressive downregulation of  hoxb4a  activity 16  (arrows; 

 h ,  k ). Images are dorsal ( a  –  h ) and ventral ( i  –  k ) views with anterior to the left. Scale bars are 50    μ m ( a  –  c ,  f ,  g ,  i ,  j ) and 10    μ m ( d ,  e ,  h ,  k ). Specimen stages: 

 a ,  b  (12   hpf),  c  –  h  (2   dpf) and  i  –  k  (20   dpf).  
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(sharks and batoids). Pectoral innervation in ratfi sh, as in all other 
species  studied here, involved Oc and Sp nerves ( Fig. 5a ). Hind-
brain pectoral neurons were also reported in a batoid 27 , unlike the 
Sp-only innervation reported in sharks 28,29 . We propose that Oc / Sp 
pectoral innervation among actinopterygians, sarcopterygians and 
members of both subclasses of chondrichthyans (the elasmobranch 
pattern may be derived) represents the ancestral condition for all 
jawed vertebrates. 

 Th e general blueprint of a hindbrain – spinal motor column 
innervating occipital, hypobranchial and pectoral muscles ( Figs 2i 
and 3i ) is likely an ancestral feature linked to the original skull-fi n 
musculo skeletal complex in fi sh ( Fig. 6a ). Fossil cephalaspids (jaw-
less fi shes / ostracoderms) exhibited well-developed pectoral fi ns that 
likely provided hydrodynamic lift , contributing to head orientation 
and sharp manoeuvres during swimming 30 . Th e fi ns were suggested 
to be innervated by the most anterior 2 – 3 ventral roots that emerged 

          Figure 5    |         Pectoral innervation in Chondricthyes (ratfi sh) and Dipnoi (lungfi sh). ( a ) Pectoral innervation in ratfi sh ( H. colliei ) included four occipital 

(Oc1 – 4) and 11 spinal nerves (Sp1 – 11). Inset shows the branching of Oc1 – 4 contributing to both hypobranchial nerve and the pectoral plexus. ( b ) Pectoral 

innervation in spotted African lungfi sh ( P. dolloi ) included one occipital (Oc3) and three spinal nerves (Sp1 – 3). Oc3 dorsal (DR) and ventral (VR) roots 

emerged at the caudal end of the hindbrain. Inset shows the ventral view of Oc1 – 3 and Sp1. Scale bars are 5   mm.  

               Figure 6    |         Evolution of pectoral innervation. ( a ) Cladogram of living jawed vertebrates 8 , with vignettes showing innervation patterns of pectoral 

appendages. Occipital (pectoral, red; hypobranchial, grey) and spinal (blue) nerves are illustrated schematically. ( b ) Summary of key  Hox  genes expressed 

in neuronal (top) and mesodermal (bottom) compartments along the anterior – posterior axis in fi sh and tetrapods 43,46,47,49,51 .  
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directly behind the vagus nerve 31,32 , similar to the condition in liv-
ing jawed fi sh ( Figs 1, 5 and 6 ;  Supplementary Figs S1 – S2, S5 ). 
Th e endoskeleton of cephalaspid pectoral fi ns was articulated to the 
cranium 33,34 , analogous to the pectoral – occipital connection in early 
fossil sarcopterygians and primitive actinopterygians 33,35  that share 
a similar pectoral endoskeletal structure 36,37 . Th e decoupling of this 
articulation and consequent increase in head mobility during 
the water-to-land transition, as seen in the fossil sarcopterygian fi sh 
 Tiktaalik roseae  2,38 , may have been the reason for pectoral innerva-
tion being dissociated from the hindbrain. Unlike in fi sh, caudal 
hindbrain ventral roots in living amphibians contribute to Sp nerves 
1 – 2 that innervate occipital, hypobranchial and hypoglossal muscles. 
Pectoral innervation typically arises from Sp nerves 3 – 5, with fore-
limb motoneurons located in the rostral spinal cord 4,5 . Th ese observa-
tions in amphibians suggest that pectoral forelimb innervation in 
early tetrapods may have been shift ed only a few segments caudally, 
relative to the pattern seen in sarcopterygian fi sh, despite separation 
of the skull and pectoral girdle 38,39 . In amniotes, there are generally 
six or more cervical vertebrae 40  giving rise to a more elaborated neck 
structure. Th e rostral limit of pectoral forelimb innervation varies 
from Sp nerve 4 in some reptiles and mammals to Sp nerve 22 in 
long-necked birds 6,41 – 44 . As lower numbers of cervical  vertebrae 
seem to be primitive for amniotes 40 , it seems that a caudal shift  
of about 5 – 6 segments in the location of the pectoral plexus, and 
therefore the motor nuclei, occurred between sarcopterygian fi sh 
and early amniotes ( Fig. 6a ). Th e absence of forelimb motoneurons 
in the tetrapod hindbrain can thus be viewed as the neuronal com-
plement to the loss of the occipital – pectoral skeletal connection and 
the increased independence of head and body motion during the 
emergence of terrestrial vertebrates 2,38 . 

 Th e repositioning of both pectoral motoneurons and the pectoral 
girdle along the body axis likely depended, in part, on evolution-
ary developmental changes in the blueprint of  Hox  gene expression, 
which is important for both neuroectoderm and mesoderm pattern-
ing along the anterior – posterior axis 45 . Th e  Hox  regulatory frame-
work is presumed to have instructed a repositioning of pectoral 
fi n / forelimb in vertebrates 43 . Th e same mechanism likely positioned 
the motor column along with appendages at the corresponding axial 
level ( Fig. 6b ), as exemplifi ed by  Hox  gene expression in both pecto-
ral 16  and forelimb 46  motoneurons. A comparison of  Hox  expression 
data from previous studies 43,46 – 49  shows that fi sh and tetrapods share 
highly similar neuronal and mesodermal  Hox  codes for  ‘ position-
ing ’  43  and  ‘ patterning ’  46  the pectoral appendage and motoneuro-
nal pool ( Fig. 6b ). Th us, the  Hox  code for both musculoskeletal 
and neuronal compartments is conserved for the pectoral motor 
system, despite anatomical diff erences in location along the anterior –
 posterior axis. As summarized in  Figure 6b , we propose that the 
posterior shift  of the pectoral motor nucleus involved sets of  cis -
regulatory changes in  Hox  genes that led to both loss of pectoral-
related transcriptional machinery in the tetrapod hindbrain and 
correlated changes in the occipital, cervical and pectoral appendage 
peripheries 43,46,47,49 – 51 . 

 In birds and mammals,  Hox6  and  Hox9  paralogous groups confer, 
respectively, cervical and thoracic identity onto the neuroectoderm 
along the anterior – posterior axis 46 . In zebrafi sh, similar to birds and 
mammals, the anterior expression limits of  Hox6  /  9  bracket the ros-
tral – caudal extent of the pectoral motoneuron region 48,49  ( Fig. 6b ). 
Th erefore, the spatial relationship of  Hox6  /  9  and pectoral moto-
neuron location has essentially been maintained during the caudal 
repositioning of the forelimb motor column ( Fig. 6b ). Similarly, in 
the mesoderm, the relative position of  Hox6  expression and the axial 
level of limb / fi n bud outgrowth seem to be conserved during pecto-
ral appendage relocation between fi sh and tetrapods 43  ( Fig. 6b ). Sub-
sequent patterning of pectoral appendages also involves  Hox9 – 13  
triphasic expression in both zebrafi sh 47  and tetrapods 51 . 

 Aft er early regionalization of the neuroectoderm,  Hox3 – 8  paralogous 
groups defi ne forelimb motoneuron pools in birds and mammals 46 . 
Th e same set of  Hox  genes is expressed in the hindbrain – spinal 
region that gives rise to pectoral motoneurons in zebrafi sh 48,49 . Hence, 
we predict the presence of  Hox3 – 8  in pectoral motoneurons, similar 
to their tetrapod counterparts, although only  Hox4  has been directly 
demonstrated so far 16  ( Fig. 6b ). Conserved expression patterns in 
neuroectoderm, mesoderm and pectoral appendages are together 
suggestive of an ancestral neuronal / mesodermal  Hox  network link-
ing motoneurons in both the hindbrain and spinal cord with the 
pectoral periphery ( Fig. 6b ). Th e evolutionary plasticity aff orded by 
this  Hox  network provided a basis for further innovations in neural 
circuitry controlling forelimb functions essential to novel mecha-
nisms of locomotion and feeding in tetrapods 2,38 .   

 Methods  
  Animals and specimens   .   Paddlefi sh were obtained from  Osage Catfi sheries  
( Osage Beach ),  salmon embryos  from  Grand Lake Stream Fish Hatchery , salmon 
juveniles and brook trout embryos from C Kraft  and D Josephson (Department of 
Natural Resources, Cornell University, Ithaca, NY),  goldfi sh  from  Hunting Greek 
Fisheries , midshipman from M Marchaterre (Department of Neurobiology and 
Behavior, Cornell University, Ithaca, NY), fi xed specimens of ratfi sh from 
J Sisneros (Department of Psychology, University of Washington, Seattle, WA, USA) 
and  South American and South African lungfi shes  from  Tropical Fish Distributors . 
Animal handling and experimental procedures were approved by the Institutional 
Animal Care and Use Committee of New York University School of Medicine 
(New York, NY, USA), Cornell University (Ithaca, NY, USA) and Marine Biological 
Laboratory (Woods Hole, MA, USA).   

  Fixation and staining for gross anatomy   .   Juveniles / adults were killed by an 
overdose of ethyl 3-aminobenzoate  methanesulphonate  (MS 222,  Sigma ), fi xed by 
4 %  paraformaldehyde perfusion and then stained sequentially with alcian blue and 
alizarin red before dissection 52 . For some paddlefi sh, nerves were stained briefl y 
with 2 %  osmium tetroxide solution aft er fi xation.   

  Retrograde labelling   .   Embryos and larvae were anaesthetized with 0.02 %  MS 
222 and immobilized in 2 %  low-gelling agarose for imaging 16 . For retrograde 
labelling in early embryos, 50 – 100   nl of saturated mixture of the  lipophilic dye 
DiD  ( Invitrogen ) in 50 %  vegetable oil / 50 %  dimethylsulphoxide was pressure 
injected into the fi n bud at 40   psi. As lipophilic dye works very poorly in live 
specimens later in development, pectoral motoneurons in larvae were labelled by 
injecting 200 – 300   nl of  Alexa Fluor 647  dextran (3 %  in 0.2 KCl with 0.1 %  Triton 
X-100) into the fi n musculature. Double labelling of either Oc or precerebel-
lar neurons was achieved by additional dye injection into, respectively, M1 – 3 
( ~ 200   nl of either  Alexa Flour 488 or 647 dextran ; 3 %  in 0.2 KCl with 0.1 %  Triton 
X-100) or the cerebellum ( ~ 50   nl of either  Alexa Fluor 488 or 594 dextran ; 3 %  in 
0.2 KCl with 0.1 %  Triton X-100) 16 .   

  Kaede lineage tracing   .   Lineage tracing experiments were conducted by injecting 
500   pg of mRNA encoding the photoconvertable protein kaede into single-cell-
stage zebrafi sh embryos 19 . Neuroepithelium and somites at the level of somites 
4 – 5 were scanned by a laser of 405   nm on a confocal microscope at either 12 or 
18   hpf, which induced green-to-red photoconversion of cytosolic kaede protein. 
Lineage of cells containing converted kaede was examined using a confocal 
microscope at 2   dpf. 

 Confocal images were obtained using a  Zeiss   510 system  and processed using 
 ImageJ  (NIH) and  Photoshop  ( Adobe ).                      
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