31 research outputs found

    Isolation and identification of a cellulolytic bacterium from the Tibetan pig's intestine and investigation of its cellulase production

    Get PDF
    Background: The Tibetan pig is a pig breedwith excellent grazing characteristics indigenous to the Qinghai\u2013Tibet plateau in China. Under conditions of barn feeding, 90% of its diet consists of forage grass, which helps meet its nutritional needs. The present study aimed to isolate and identify a cellulolytic bacterium from the Tibetan pig's intestine and investigate cellulase production by this bacterium. The study purpose is to provide a basic theory for the research and development of herbivore characteristics and to identify a source of probiotics from the Tibetan pig. Results: A cellulolytic bacterium was isolated from a Tibetan pig's intestine and identified based on morphological, physiological, and biochemical characteristics as well as 16S rRNA analysis; it was designated Bacillus subtilis BY-2. Examination of its growth characteristics showed that its growth curve entered the logarithmic phase after 8\u201312 h and the stable growth phase being between 20 and 40 h. The best carbon source for fermentation was 1% corn flour, while 2% peptone and yeast powder compound were the best nitrogen sources. The initial pH during fermentation was 5.5, with 4% inoculum, resulting in a high and stable amount of enzyme in 24\u201348 h. Conclusions: The isolated BY-2 strain rapidly grew and produced cellulase.We believe that BY-2 cellulase can help overcome the shortage of endogenous animal cellulase, improve the utilization rate of roughage, and provide strain sources for research on porcine probiotics

    Truncating Mutation in the Autophagy Gene \u3cem\u3eUVRAG\u3c/em\u3e Confers Oncogenic Properties and Chemosensitivity in Colorectal Cancers

    Get PDF
    Autophagy-related factors are implicated in metabolic adaptation and cancer metastasis. However, the role of autophagy factors in cancer progression and their effect in treatment response remain largely elusive. Recent studies have shown that UVRAG, a key autophagic tumour suppressor, is mutated in common human cancers. Here we demonstrate that the cancer-related UVRAG frameshift (FS), which does not result in a null mutation, is expressed as a truncated UVRAGFS in colorectal cancer (CRC) with microsatellite instability (MSI), and promotes tumorigenesis. UVRAGFS abrogates the normal functions of UVRAG, including autophagy, in a dominant-negative manner. Furthermore, expression of UVRAGFS can trigger CRC metastatic spread through Rac1 activation and epithelial-to-mesenchymal transition, independently of autophagy. Interestingly, UVRAGFS expression renders cells more sensitive to standard chemotherapy regimen due to a DNA repair defect. These results identify UVRAG as a new MSI target gene and provide a mechanism for UVRAG participation in CRC pathogenesis and treatment response

    Genome-wide differences in DNA methylation changes in caprine ovaries between oestrous and dioestrous phases

    No full text
    Abstract Background DNA methylation plays a vital role in reproduction. Entire genome DNA methylation changes during the oestrous phase (ES) and dioestrous phase (DS) in the ovaries of Guanzhong dairy goats were investigated using bisulphite sequencing to understand the molecular biological mechanisms of these goats’ oestrous cycle. Results We discovered distinct genome-wide DNA methylation patterns in ES and DS ovaries. A total of 26,910 differentially methylated regions were upregulated and 21,453 differentially methylated regions were downregulated in the ES samples compared with the DS samples (P-values ≤0.05 and fold change of methylation ratios ≥2). Differentially methylated region analysis showed hypomethylation in the gene body regions and hypermethylation in the joining region between upstream regions and gene bodies. The methylation ratios of the STAR, FGF2, FGF12, BMP5 and SMAD6 genes in the ES samples were lower than those of the DS samples (P-values ≤0.05 and fold change of methylation ratios ≥2). Conversely, the methylation ratios of the EGFR, TGFBR2, IGF2BP1 and MMD2 genes increased in the ES samples compared with the DS samples. In addition, 223 differentially methylated genes were found in the GnRH signalling pathway (KO04912), ovarian steroidogenesis pathway (KO04913), oestrogen signalling pathway (KO04915), oxytocin signalling pathway (KO04921), insulin secretion pathway (KO04911) and MAPK signalling pathway (KO04010). Conclusions This study is the first large-scale comparison of the high-resolution DNA methylation landscapes of oestrous and dioestrous ovaries from dairy goats. Previous studies and our investigations have shown that the NR5A2, STAR, FGF2 and BMP5 genes might have potential application value in regulating caprine oestrus

    Cloning and characterization of the yak gene coding for calpastatin and in silico analysis of its putative product

    No full text
    The calcium-activated neutral proteases, μ- and m-calpain, along with their inhibitor, calpastatin, have been demonstrated to mediate a variety of Ca2+-dependent processes including signal transduction, cell proliferation, cell cycle progression, differentiation, apoptosis, membrane fusion, platelet activation and skeletal muscle protein degradation. The cDNA coding for yak calpastatin was amplified and cloned by RT-PCR to investigate and characterize the nucleotide/amino-acid sequence and to predict structure and function of the calpastatin. The present study suggests that the yak calpastatin gene encodes a protein of 786 amino acids that shares 99 % sequence identity with the amino-acid sequence of cattle calpastatin, and that the yak protein is composed of an N-terminal region (domains L and XL) and four repetitive homologous C-terminal domains (d1–d4), in which several prosite motifs are present including short peptide L54–64 (EVKPKEHTEPK in domain L) and GXXE/ DXTIPPXYR (in subdomain B), where X is a variable amino acid. Our results suggest the existence of other functional sites including potential phosphorylation sites for protein kinase C, cAMP- and cGMP-dependent protein kinase, casein kinase II, as well as N-myristoylation and amidation sites that play an important role in molecular regulation of the calpain/calpastatin system. The regulation of the calpain/calpastatin system is determined by the interaction between dIV and dVI in calpains and subdomains A, B, and C in calpastatin

    UVRAG

    No full text

    LncRNA Neat1 targets NonO and miR-128-3p to promote antigen-specific Th17 cell responses and autoimmune inflammation

    No full text
    Abstract Long non-coding RNAs (lncRNAs) interaction with RNA-Binding proteins (RBPs) plays an important role in immunological processes. The generation of antigen-specific Th17 cells is closely associated with autoimmune pathogenesis. However, the function of lncRNA-RBP interactions in the regulation of pathogenic Th17 cell responses during autoimmunity remains poorly understood. Here, we found that lncRNA Neat1, highly expressed in Th17 cells, promoted antigen-specific Th17 cell responses. Both global and CD4+ T cell-specific knockdown of Neat1 protected mice against the development of experimental autoimmune uveitis (EAU). Mechanistically, Neat1 regulated RNA-Binding protein NonO, thus relieving IL-17 and IL-23R from NonO-mediated transcriptional repression and supporting antigen-specific Th17 cell responses. In addition, Neat1 also modulated miR-128-3p/NFAT5 axis to increase the expression of IL-17 and IL-23R, leading to augmented Th17 cell responses. Our findings elucidate a previously unrecognized mechanistic insight into the action of Neat1 in promoting antigen-specific Th17 responses and autoimmunity, and may facilitate the development of therapeutic targets for T cell-mediated autoimmune diseases

    Isolation and identification of a cellulolytic bacterium from the Tibetan pig's intestine and investigation of its cellulase production

    Get PDF
    Background: The Tibetan pig is a pig breed with excellent grazing characteristics indigenous to the Qinghai–Tibet plateau in China. Under conditions of barn feeding, 90% of its diet consists of forage grass, which helps meet its nutritional needs. The present study aimed to isolate and identify a cellulolytic bacterium from the Tibetan pig's intestine and investigate cellulase production by this bacterium. The study purpose is to provide a basic theory for the research and development of herbivore characteristics and to identify a source of probiotics from the Tibetan pig. Results: A cellulolytic bacterium was isolated from a Tibetan pig's intestine and identified based on morphological, physiological, and biochemical characteristics as well as 16S rRNA analysis; it was designated Bacillus subtilis BY-2. Examination of its growth characteristics showed that its growth curve entered the logarithmic phase after 8–12 h and the stable growth phase being between 20 and 40 h. The best carbon source for fermentation was 1% corn flour, while 2% peptone and yeast powder compound were the best nitrogen sources. The initial pH during fermentation was 5.5, with 4% inoculum, resulting in a high and stable amount of enzyme in 24–48 h. Conclusions: The isolated BY-2 strain rapidly grew and produced cellulase. We believe that BY-2 cellulase can help overcome the shortage of endogenous animal cellulase, improve the utilization rate of roughage, and provide strain sources for research on porcine probiotics

    Endometrial Epithelial Cell Apoptosis Is Inhibited by a ciR8073-miR181a-Neurotensis Pathway during Embryo Implantation

    No full text
    Development of the receptive endometrium (RE) from the pre-receptive endometrium (PE) is essential for embryo implantation, but its molecular mechanisms have not been fully understood. In this study, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks were constructed to explore the functions of potential competing endogenous RNAs (ceRNA) during the development of RE in dairy goats. We observed that circRNA8073 (ciR8073) decreased the levels of miR-181a by acting as a miRNA sponge. This effect indirectly increased the expression of neurotensin in endometrial epithelial cells (EECs). Neurotensin then inhibited EEC apoptosis by increasing the expression of BCL-2/BAX in favor of BCL-2 via the MAPK pathway and also induced increased expression of leukemia-inhibitory factor, cyclo-oxygenase 2, vascular endothelial growth factor A, and homeobox A10. We have thus identified a ciR8073-miR181a-neurotensin pathway in the endometrium of dairy goats. Through this pathway, ciR8073 functions as a ceRNA that sequesters miR-181a, thereby protecting neurotensin transcripts from miR-181a-mediated suppression in EECs. Keywords: receptive endometrium, ceRNA, ciR8073-miR181a-NTS, endometrial epithelial cells, EECs, dairy goat
    corecore