150,957 research outputs found
Graded Symmetry Algebras of Time-Dependent Evolution Equations and Application to the Modified KP equations
By starting from known graded Lie algebras, including Virasoro algebras, new
kinds of time-dependent evolution equations are found possessing graded
symmetry algebras. The modified KP equations are taken as an illustrative
example: new modified KP equations with arbitrary time-dependent
coefficients are obtained possessing symmetries involving arbitrary
functions of time. A particular graded symmetry algebra for the modified KP
equations is derived in this connection homomorphic to the Virasoro algebras.Comment: 19 pages, latex, to appear in J. Nonlinear Math. Phy
Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds
A novel multi-scale operator for unorganized 3D point clouds is introduced.
The Difference of Normals (DoN) provides a computationally efficient,
multi-scale approach to processing large unorganized 3D point clouds. The
application of DoN in the multi-scale filtering of two different real-world
outdoor urban LIDAR scene datasets is quantitatively and qualitatively
demonstrated. In both datasets the DoN operator is shown to segment large 3D
point clouds into scale-salient clusters, such as cars, people, and lamp posts
towards applications in semi-automatic annotation, and as a pre-processing step
in automatic object recognition. The application of the operator to
segmentation is evaluated on a large public dataset of outdoor LIDAR scenes
with ground truth annotations.Comment: To be published in proceedings of 3DIMPVT 201
Isovector Giant Dipole Resonance of Stable Nuclei in a Consistent Relativistic Random Phase Approximation
A fully consistent relativistic random phase approximation is applied to
study the systematic behavior of the isovector giant dipole resonance of nuclei
along the -stability line in order to test the effective Lagrangians
recently developed. The centroid energies of response functions of the
isovector giant dipole resonance for stable nuclei are compared with the
corresponding experimental data and the good agreement is obtained. It is found
that the effective Lagrangian with an appropriate nuclear symmetry energy,
which can well describe the ground state properties of nuclei, could also
reproduce the isovector giant dipole resonance of nuclei along the
-stability line.Comment: 4 pages, 1 Postscript figure, to be submitted to Chin.Phys.Let
Separation of variables for soliton equations via their binary constrained flows
Binary constrained flows of soliton equations admitting Lax
matrices have 2N degrees of freedom, which is twice as many as degrees of
freedom in the case of mono-constrained flows. For their separation of
variables only N pairs of canonical separated variables can be introduced via
their Lax matrices by using the normal method. A new method to introduce the
other N pairs of canonical separated variables and additional separated
equations is proposed. The Jacobi inversion problems for binary constrained
flows are established. Finally, the factorization of soliton equations by two
commuting binary constrained flows and the separability of binary constrained
flows enable us to construct the Jacobi inversion problems for some soliton
hierarchies.Comment: 39 pages, Amste
Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions
Elliptic flow () and hexadecupole flow () of light clusters have
been studied in details for 25 MeV/nucleon Kr + Sn at large
impact parameters by Quantum Molecular Dynamics model with different potential
parameters. Four parameter sets which include soft or hard equation of state
(EOS) with/without symmetry energy term are used. Both number-of-nucleon ()
scaling of the elliptic flow versus transverse momentum () and the scaling
of versus have been demonstrated for the light clusters
in all above calculation conditions. It was also found that the ratio of
keeps a constant of 1/2 which is independent of for all the
light fragments. By comparisons among different combinations of EOS and
symmetry potential term, the results show that the above scaling behaviors are
solid which do not depend the details of potential, while the strength of flows
is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure
Enhancing the Efficiency of Organic Photovoltaics by a Photoactive Molecular Mediator
High boiling-point solvent additives, such as 1,8-diiodooctane, have been widely used to tune nanoscale phase morphology for increased efficiency in bulk heterojunction organic solar cells. However, liquid-state solvent additives remain in the active films for extended times and later migrate or evaporate from the films, leading to unstable device performance. Here, a solid-state photoactive molecular mediator, namely N(BAI)3, is reported that could be employed to replace the commonly used solvent additives to tune the morphology of bulk heterojunction films for improved device performance. The N(BAI)3 mediator not only resides in the active films locally to fine tune the phase morphology, but also contributes to the additional absorption of the active films, leading to ∼11% enhancement of power conversion efficiency of P3HT:PC60BM devices. Comparative studies are carried out to probe the nanoscale morphologies using grazing incidence wide-angle X-ray scattering and complementary neutron reflectometry. The use of 1 wt% N(BAI)3 is found to effectively tune the packing of P3HT, presumably through balanced π-interactions endowed by its large conjugated π surface, and to promote the formation of a PC60BM-rich top interfacial layer. These findings open up a new way to effectively tailor the phase morphology by photoactive molecular mediators in organic photovoltaics
Two-Dimensional Inversion Asymmetric Topological Insulators in Functionalized III-Bi Bilayers
The search for inversion asymmetric topological insulators (IATIs) persists
as an effect for realizing new topological phenomena. However, so for only a
few IATIs have been discovered and there is no IATI exhibiting a large band gap
exceeding 0.6 eV. Using first-principles calculations, we predict a series of
new IATIs in saturated Group III-Bi bilayers. We show that all these IATIs
preserve extraordinary large bulk band gaps which are well above
room-temperature, allowing for viable applications in room-temperature
spintronic devices. More importantly, most of these systems display large bulk
band gaps that far exceed 0.6 eV and, part of them even are up to ~1 eV, which
are larger than any IATIs ever reported. The nontrivial topological situation
in these systems is confirmed by the identified band inversion of the band
structures and an explicit demonstration of the topological edge states.
Interestingly, the nontrivial band order characteristics are intrinsic to most
of these materials and are not subject to spin-orbit coupling. Owning to their
asymmetric structures, remarkable Rashba spin splitting is produced in both the
valence and conduction bands of these systems. These predictions strongly
revive these new systems as excellent candidates for IATI-based novel
applications.Comment: 17 pages,5figure
- …