62,961 research outputs found

    Implications of coral reef buildup for the controls on atmospheric CO2 since the Last Glacial Maximum

    Get PDF
    We examine the effect on atmospheric CO2 of the occurrence of increased shallow water carbonate deposition and regrowth of the terrestrial biosphere following the last glacial. We find that contrary to recent speculations that changes in terrestrial carbon storage were primarily responsible for the observed similar to20 ppmv late Holocene CO2 rise, a more likely explanation is coral reef buildup and other forms of shallow water carbonate deposition during this time. The importance of a responsive terrestrial carbon reservoir may instead be as a negative feedback restricting the rate of CO2 rise possible in the early stages of the deglacial transition. This separation in time of the primary impacts of regrowth of the terrestrial biosphere and increased shallow water carbonate deposition explains the occurrence of an early Holocene carbonate preservation event observed in deep-sea sediments. We demonstrate that their combined influence is also consistent with available proxy estimates of deep ocean carbonate ion concentration changes over the last 21 kyr. Accounting for the processes that act on the carbonate chemistry of the ocean as a whole then allows us to place strong constraints on the nature of the remaining processes that must be operating at the deglacial transition. By subtracting the net CO2 effect of coral reef buildup and terrestrial biosphere regrowth from recent high-resolution ice core data, we highlight two periods, from 17.0 to 13.8 kyr and 12.3 to 11.2 kyr BP characterized by sustained rapid rates of CO2 increase (> 12 ppmv kyr(-1)). Because these periods are coincident with Southern Hemisphere "deglaciation,'' we argue that changes in the biogeochemical properties of the Southern Ocean surface are the most likely cause

    Desperately seeking assurances: segmenting users by their information-seeking preferences: A Q methodology study of users’ ranking of privacy, security & trust cues

    Get PDF
    Users of technology services try to evaluate the risks of disclosing personal information in light of the benefits they believe they will receive. However, because of cognitive, time or other constraints, users concentrate on minimizing the uncertainties of disclosure – reducing their level of privacy concern – by using a limited set of information cues. We suggest an individual’s information-seeking behavior is focused on those cues which are important to them. Q methodology was used to determine if users of technology services can be segmented, based on the type of information cues they consider important – many of which are related to technology services’ privacy behavior. The study consisted of 58 participants split into two cohorts, who rank-ordered 40 statements describing the attributes of a technology service. In our study, 69% of participants loaded significantly into only one of five groups: 1) Information Controllers; 2) Security Concerned; 3) Benefits Seekers; 4) Crowd Followers; and 5) Organizational Assurance Seekers. Only 12% of participants did not load significantly into any of the five groups. Our findings assist practitioners in understanding how their privacy behavior (e.g. repurposing information) and privacy-sensitive technology design (e.g. providing feedback and control mechanisms) could encourage or discourage the adoption of technology services by different types of users. We argue the user segmentation identified by this study can inform the construction of more holistic privacy persona

    PET-CMR in heart failure - synergistic or redundant imaging?

    Get PDF
    Imaging in heart failure (HF) provides data for diagnosis, prognosis and disease monitoring. Both MRI and nuclear imaging techniques have been successfully used for this purpose in HF. Positron Emission Tomography-Cardiac Magnetic Resonance (PET-CMR) is an example of a new multimodality diagnostic imaging technique with potential applications in HF. The threshold for adopting a new diagnostic tool to clinical practice must necessarily be high, lest they exacerbate costs without improving care. New modalities must demonstrate clinical superiority, or at least equivalence, combined with another important advantage, such as lower cost or improved patient safety. The purpose of this review is to outline the current status of multimodality PET-CMR with regard to HF applications, and determine whether the clinical utility of this new technology justifies the cost

    LittleDarwin: a Feature-Rich and Extensible Mutation Testing Framework for Large and Complex Java Systems

    Full text link
    Mutation testing is a well-studied method for increasing the quality of a test suite. We designed LittleDarwin as a mutation testing framework able to cope with large and complex Java software systems, while still being easily extensible with new experimental components. LittleDarwin addresses two existing problems in the domain of mutation testing: having a tool able to work within an industrial setting, and yet, be open to extension for cutting edge techniques provided by academia. LittleDarwin already offers higher-order mutation, null type mutants, mutant sampling, manual mutation, and mutant subsumption analysis. There is no tool today available with all these features that is able to work with typical industrial software systems.Comment: Pre-proceedings of the 7th IPM International Conference on Fundamentals of Software Engineerin

    ZnO nanorod arrays as electron injection layers for efficient organic light emitting diodes

    Get PDF
    Nanostructured oxide arrays have received significant attention as charge injection and collection electrodes in numerous optoelectronic devices. Zinc oxide (ZnO) nanorods have received particular interest owing to the ease of fabrication using scalable, solution processes with a high degree of control of rod dimension and density. Here, vertical ZnO nanorods as electron injection layers in organic light emitting diodes are implemented for display and lighting purposes. Implementing nanorods into devices with an emissive polymer, poly(9,9-dioctyluorene-alt-benzothiadiazole) (F8BT) and poly(9,9-di-n-octylfluorene-alt-N-(4-butylphenyl)dipheny-lamine) (TFB) as an electron blocking layer, brightness and efficiencies up to 8602 cd m−2 and 1.66 cd A−1 are achieved. Simple solution processing methodologies combined with postdeposition thermal processing are highlighted to achieve complete wetting of the nanorod arrays with the emissive polymer. The introduction of TFB to minimize charge leakage and nonradiative exciton decay results in dramatic increases to device yields and provides an insight into the operating mechanism of these devices. It is demonstrated that the detected emission originates from within the polymer layers with no evidence of ZnO band edge or defect emission. The work represents a significant development for the ongoing implementation of ZnO nanorod arrays into efficient light emitting devices

    Fluorene copolymer bilayers for emission colour tuning in inverted hybrid light emitting diodes

    No full text
    © The Royal Society of Chemistry 2015.We present a robust, entirely solution-based processing route for the deposition of planar F8BT/TFB poly(9,9-dioctylfluorene-alt-benzothiadiazole)/poly(9,9-dioctylfluorene-alt-N-(4-butylphenyl)-diphenylamine) emissive/hole transport bilayers for emission colour tuning in inverted organic-inorganic hybrid light emitting diodes (HyLEDs). Our method allows the facile exploration of TFB thickness for the first time within inverted devices; here we describe the influence of TFB thickness on the device performance. In particular, we demonstrate significant variations in device electroluminescence with highly controlled tunability between green and orange (550 to 610 nm) emission; correlating directly with the thickness of the TFB layer. These changes are in parallel with a 20-fold increase in current efficiency with respect to F8BT-only devices, with our bilayer devices exhibiting luminance values exceeding 11 000 cd m-2. Additionally, through reflectance and angle-dependent electroluminescence measurements we explore the presence of microcavity effects and their impact on device behaviour. We introduce TFB not only as a charge blocking/transporting layer but also as an optical emission-tuning layer

    Beeswax organogels: Influence of gelator concentration and oil type in the gelation process

    Get PDF
    This work focused on how different types of oil phase, MCT (medium chain triglycerides) and LCT (long chain triglycerides), exert influence on the gelation process of beeswax and thus properties of the organogel produced thereof. Organogels were produced at different temperatures and qualitative phase diagrams were constructed to identify and classify the type of structure formed at various compositions. The microstructure of gelator crystals was studied by polarized light microscopy. Melting and crystallization were characterized by differential scanning calorimetry and rheology (flow and small amplitude oscillatory measurements) to understand organogels' behaviour under different mechanical and thermal conditions. FTIR analysis was employed for a further understanding of oil-gelator chemical interactions. Results showed that the increase of beeswax concentration led to higher values of storage and loss moduli (G, G) and complex modulus (G*) of organogels, which is associated to the strong network formed between the crystalline gelator structure and the oil phase. Crystallization occurred in two steps (well evidenced for higher concentrations of gelator) during temperature decreasing. Thermal analysis showed the occurrence of hysteresis between melting and crystallization. Small angle X-ray scattering (SAXS) analysis allowed a better understanding in terms of how crystal conformations were disposed for each type of organogel. The structuring process supported by medium or long-chain triglycerides oils was an important exploit to apprehend the impact of different carbon chain-size on the gelation process and on gels' properties.The authors thank the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, SP, Brazil) for the opportunity to carry out SAXS measurements. The author Miguel A. Cerqueira is recipient of a fellowship (SFRH/BPD/72753/2010) supported by Fundação para a Ciência e a Tecnologia, POPH-QREN and FSE (FCT, Portugal). The financial support of CAPES/FCT Project “Nanotechnological systems based in biocompatible ingredients: characterization, controlled release and in vitro digestion” (CAPES/FCT no. 348/13) and CNPq (Universal 479459/2012-6) are gratefully acknowledged. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462)
    corecore