161,083 research outputs found
Nonlinear Dynamics in the Resonance Lineshape of NbN Superconducting Resonators
In this work we report on unusual nonlinear dynamics measured in the
resonance response of NbN superconducting microwave resonators. The nonlinear
dynamics, occurring at relatively low input powers (2-4 orders of magnitude
lower than Nb), and which include among others, jumps in the resonance
lineshape, hysteresis loops changing direction and resonance frequency shift,
are measured herein using varying input power, applied magnetic field, white
noise and rapid frequency sweeps. Based on these measurement results, we
consider a hypothesis according to which local heating of weak links forming at
the boundaries of the NbN grains are responsible for the observed behavior, and
we show that most of the experimental results are qualitatively consistent with
such hypothesis.Comment: Updated version (of cond-mat/0504582), 16 figure
Active noise control on high frequency narrow band dental drill noise: Preliminary results
Dental drills produce a characteristic noise that is uncomfortable for patients and is also known to be harmful to dentists under prolonged exposure. It is therefore desirable to protect the patient and dentist whilst allowing two-way communication. A solution is to use a combination of the three main noise cancellation methods, namely, Passive Noise Control, Adaptive Filtering and Active Noise Control. Dental drill noise occurs at very high frequency ranges in relation to conventional ANC, typically 2kHz to 6kHz and it has a narrow band characteristic due to the direct relation of the noise to the rotational speed of the bearing. This paper presents a design of an experimental rig where first applications of ANC on dental drill noise are executed using the standard filtered reference Least Mean Square (FXLMS) algorithm. The secondary path is kept as simple as possible, due to the high frequency range of interest, and hence is chosen as the space between headphone loudspeaker and error microphone placed in the ear (input of the headphone loudspeaker and the output of the error microphone). A standard headphone loudspeaker is used for the control source and the microphone inside of an âEar and Cheek Simulator Type 43AGâ is used as the error microphone. The secondary path transfer function is obtained and preliminary results of the application of ANC are discussed
Dental drill noise reduction using a combination of active noise control, passive noise control and adaptive filtering
Dental drills produce a characteristic high frequency, narrow band noise that is uncomfortable for patients and is also known to be harmful to dentists under prolonged exposure. It is therefore desirable to protect the patient and dentist whilst allowing two-way communication. A solution is to use a combination of the three main noise control methods, namely, Passive Noise Control (PNC), Adaptive Filtering (AF) and Active Noise Control (ANC). This paper discusses the application of the three methods to reduce dental drill noise while allowing two-way communication. Experimental setup for measuring the noise reduction by PNC is explained and results from different headphones and headphone types are presented. The implementation and results of an AF system using the Least Mean Square (LMS) algorithm are shown. ANC requires a modification of the LMS algorithm due to the introduction of the electro-acoustical cancellation path transfer function to compensate for the delays introduced by the control system. Therefore a cancellation path transfer function modeling method based on the filtered reference LMS (FXLMS) algorithm is presented along with preliminary results of the implementation
Active noise control for high frequencies
There are many applications that can benefit from Active Noise Control (ANC) such as in aircraft cabins and air conditioning ducts, i.e. in situations where technology interferes with human hearing in a harmful way or disrupts communication. Headsets with analogue ANC circuits have been used in the armed forces for attenuating frequencies below 1 kHz, which when combined with passive filtering offers protection across the whole frequency range of human hearing. A dental surgery is also a noisy environment; in which dental drill noise is commonly off-putting for many patients and is believed to harm the dentistâs hearing over a long period of time. However, dealing with dental drill noise is a different proposition from the applications mentioned above as the frequency range of the peak amplitudes goes from approximately 1.5 kHz to 12 kHz, whereas conventional ANC applications consider a maximum of 1.5 kHz. This paper will review the application of ANC at low frequencies and justify an approach for dealing with dental noise using digital technologies at higher frequencies. The limits of current ANC technologies will be highlighted and the means of improving performance for this dental application will be explored. In particular, technicalities of implementing filtering algorithms on a Digital Signal Processor will be addressed
Real-time adaptive filtering of dental drill noise using a digital signal processor
The application of noise reduction methods requires the integration of acoustics engineering and digital signal processing, which is well served by a mechatronic approach as described in this paper. The Normalised Least Mean Square (NLMS) algorithm is implemented on the Texas Instruments TMS320C6713 DSK Digital Signal Processor (DSP) as an adaptive digital filter for dental drill noise. Blocks within the Matlab/Simulink Signal Processing Blockset and the Embedded Target for TI C6000 DSP family are used. A working model of the algorithm is then transferred to the Code Composer Studio (CCS), where the desired code can be linked and transferred to the target DSP. The experimental rig comprises a noise reference microphone, a microphone for the desired signal, the DSK and loudspeakers. Different load situations of the dental drill are considered as the noise characteristics change when the drill load changes. The result is that annoying drill noise peaks, which occur in a frequency range from 1.5 kHz to 10 kHz, are filtered out adaptively by the DSP. Additionally a schematic design for its implementation in a dentistâs surgery will also be presented
Melosh rotation: source of the proton's missing spin
It is shown that the observed small value of the integrated spin structure
function for protons could be naturally understood within the naive quark model
by considering the effect from Melosh rotation. The key to this problem lies in
the fact that the deep inelastic process probes the light-cone quarks rather
than the instant-form quarks, and that the spin of the proton is the sum of the
Melosh rotated light-cone spin of the individual quarks rather than simply the
sum of the light-cone spin of the quarks directly.Comment: 5 latex page
Solid-state interdiffusion reactions in Ni/Ti and Ni/Zr multilayered thin films
We have performed a comparative transmission electron microscopy study of solid-state interdiffusion reactions in multilayered Ni/Zr and Ni/Ti thin films. The Ni-Zr reaction product was amorphous while the Ni-Ti reaction product was a simple intermetallic compound. Because thermodynamic and chemical properties of these two alloy systems are similar, we suggest kinetic origins for this difference in reaction product
Kinetics and moving species during Co2Si formation by rapid thermal annealing
We have investigated the growth kinetics and identified the moving species during Co2Si formation by rapid thermal annealing (RTA). For the kinetics study, samples which consisted of a thin Co film on an evaporated Si substrate were used. To study which species moves, samples imbedded with two very thin Ta markers were employed. Upon RTA, only one silicide phase, Co2Si, was observed to grow before all Co was consumed. The square root of time dependence and the activation energy of about 2.1¹0.2 eV were observed during the Co2Si formation up to 680 °C. The marker study indicated that Co is the dominant mobile species during Co2Si formation by RTA. We conclude that Co2Si grows by the same mechanisms during RTA and conventional thermal annealing
Silicon resistor to measure temperature during rapid thermal annealing
A resistor composed of a piece of Si wafer and two thin silver wires attached to it, can reliably sense the temperature during rapid thermal annealing (RTA). As constant electric current passes through the Si piece, the resistivity change of Si with temperature produces a voltage signal that can be readily calibrated and converted to an actual temperature of the samples. An accuracy better than ¹10 °C is achieved between 300° and 600 °C
Measuring patchy reionisation with kSZ-21 cm correlations
We study cross-correlations of the kinetic Sunyaev-Zel'dovich effect (kSZ)
and 21 cm signals during the epoch of reionisation (EoR) to measure the effects
of patchy reionisation. Since the kSZ effect is proportional to the
line-of-sight velocity, the kSZ-21 cm cross correlation suffers from
cancellation at small angular scales. We thus focus on the correlation between
the kSZ-squared field (kSZ) and 21 cm signals. When the global ionisation
fraction is low (), the kSZ fluctuation is dominated by
rare ionised bubbles which leads to an anti-correlation with the 21 cm signal.
When , the correlation is dominated by small pockets of
neutral regions, leading to a positive correlation. However, at very high
redshifts when , the spin temperature fluctuations change the sign of
the correlation from negative to positive, as weakly ionised regions can have
strong 21 cm signals in this case. To extract this correlation, we find that
Wiener filtering is effective in removing large signals from the primary CMB
anisotropy. The expected signal-to-noise ratios for a 10-hour integration
of upcoming Square Kilometer Array data cross-correlated with maps from the
current generation of CMB observatories with 3.4~K arcmin noise and
1.7~arcmin beam over 100~deg are 51, 60, and 37 for , 0.5, and
0.9, respectively.Comment: 7pages, 7 figure
- âŚ