382 research outputs found
Optimal Assembly for High Throughput Shotgun Sequencing
We present a framework for the design of optimal assembly algorithms for
shotgun sequencing under the criterion of complete reconstruction. We derive a
lower bound on the read length and the coverage depth required for
reconstruction in terms of the repeat statistics of the genome. Building on
earlier works, we design a de Brujin graph based assembly algorithm which can
achieve very close to the lower bound for repeat statistics of a wide range of
sequenced genomes, including the GAGE datasets. The results are based on a set
of necessary and sufficient conditions on the DNA sequence and the reads for
reconstruction. The conditions can be viewed as the shotgun sequencing analogue
of Ukkonen-Pevzner's necessary and sufficient conditions for Sequencing by
Hybridization.Comment: 26 pages, 18 figure
Inferring the Sign of Kinase-Substrate Interactions by Combining Quantitative Phosphoproteomics with a Literature-Based Mammalian Kinome Network
Protein phosphorylation is a reversible post-translational modification
commonly used by cell signaling networks to transmit information about the
extracellular environment into intracellular organelles for the regulation of
the activity and sorting of proteins within the cell. For this study we
reconstructed a literature-based mammalian kinase-substrate network from
several online resources. The interactions within this directed graph network
connect kinases to their substrates, through specific phosphosites including
kinase-kinase regulatory interactions. However, the "signs" of links,
activation or inhibition of the substrate upon phosphorylation, within this
network are mostly unknown. Here we show how we can infer the "signs"
indirectly using data from quantitative phosphoproteomics experiments applied
to mammalian cells combined with the literature-based kinase-substrate network.
Our inference method was able to predict the sign for 321 links and 153
phosphosites on 120 kinases, resulting in signed and directed subnetwork of
mammalian kinase-kinase interactions. Such an approach can rapidly advance the
reconstruction of cell signaling pathways and networks regulating mammalian
cells.Comment: 5 page, 3 figures, IEEE-BIBE confrenc
Telescoper: de novo assembly of highly repetitive regions.
MotivationWith advances in sequencing technology, it has become faster and cheaper to obtain short-read data from which to assemble genomes. Although there has been considerable progress in the field of genome assembly, producing high-quality de novo assemblies from short-reads remains challenging, primarily because of the complex repeat structures found in the genomes of most higher organisms. The telomeric regions of many genomes are particularly difficult to assemble, though much could be gained from the study of these regions, as their evolution has not been fully characterized and they have been linked to aging.ResultsIn this article, we tackle the problem of assembling highly repetitive regions by developing a novel algorithm that iteratively extends long paths through a series of read-overlap graphs and evaluates them based on a statistical framework. Our algorithm, Telescoper, uses short- and long-insert libraries in an integrated way throughout the assembly process. Results on real and simulated data demonstrate that our approach can effectively resolve much of the complex repeat structures found in the telomeres of yeast genomes, especially when longer long-insert libraries are used.AvailabilityTelescoper is publicly available for download at sourceforge.net/p/[email protected] informationSupplementary data are available at Bioinformatics online
SMaSH: A Benchmarking Toolkit for Human Genome Variant Calling
Motivation: Computational methods are essential to extract actionable
information from raw sequencing data, and to thus fulfill the promise of
next-generation sequencing technology. Unfortunately, computational tools
developed to call variants from human sequencing data disagree on many of their
predictions, and current methods to evaluate accuracy and computational
performance are ad-hoc and incomplete. Agreement on benchmarking variant
calling methods would stimulate development of genomic processing tools and
facilitate communication among researchers.
Results: We propose SMaSH, a benchmarking methodology for evaluating human
genome variant calling algorithms. We generate synthetic datasets, organize and
interpret a wide range of existing benchmarking data for real genomes, and
propose a set of accuracy and computational performance metrics for evaluating
variant calling methods on this benchmarking data. Moreover, we illustrate the
utility of SMaSH to evaluate the performance of some leading single nucleotide
polymorphism (SNP), indel, and structural variant calling algorithms.
Availability: We provide free and open access online to the SMaSH toolkit,
along with detailed documentation, at smash.cs.berkeley.edu
Bag6 complex contains a minimal tail-anchor–targeting module and a mock BAG domain
BCL2-associated athanogene cochaperone 6 (Bag6) plays a central role in cellular homeostasis in a diverse array of processes and is part of the heterotrimeric Bag6 complex, which also includes ubiquitin-like 4A (Ubl4A) and transmembrane domain recognition complex 35 (TRC35). This complex recently has been shown to be important in the TRC pathway, the mislocalized protein degradation pathway, and the endoplasmic reticulum-associated degradation pathway. Here we define the architecture of the Bag6 complex, demonstrating that both TRC35 and Ubl4A have distinct C-terminal binding sites on Bag6 defining a minimal Bag6 complex. A crystal structure of the Bag6–Ubl4A dimer demonstrates that Bag6–BAG is not a canonical BAG domain, and this finding is substantiated biochemically. Remarkably, the minimal Bag6 complex defined here facilitates tail-anchored substrate transfer from small glutamine-rich tetratricopeptide repeat-containing protein α to TRC40. These findings provide structural insight into the complex network of proteins coordinated by Bag6
Worldwide food recall patterns over an eleven month period: A country perspective.
<p>Abstract</p> <p>Background</p> <p>Following the World Health Organization Forum in November 2007, the Beijing Declaration recognized the importance of food safety along with the rights of all individuals to a safe and adequate diet. The aim of this study is to retrospectively analyze the patterns in food alert and recall by countries to identify the principal hazard generators and gatekeepers of food safety in the eleven months leading up to the Declaration.</p> <p>Methods</p> <p>The food recall data set was collected by the Laboratory of the Government Chemist (LGC, UK) over the period from January to November 2007. Statistics were computed with the focus reporting patterns by the 117 countries. The complexity of the recorded interrelations was depicted as a network constructed from structural properties contained in the data. The analysed network properties included degrees, weighted degrees, modularity and <it>k</it>-core decomposition. Network analyses of the reports, based on 'country making report' (<it>detector</it>) and 'country reported on' (<it>transgressor</it>), revealed that the network is organized around a dominant core.</p> <p>Results</p> <p>Ten countries were reported for sixty per cent of all faulty products marketed, with the top 5 countries having received between 100 to 281 reports. Further analysis of the dominant core revealed that out of the top five transgressors three made no reports (in the order China > Turkey > Iran). The top ten detectors account for three quarters of reports with three > 300 (Italy: 406, Germany: 340, United Kingdom: 322).</p> <p>Conclusion</p> <p>Of the 117 countries studied, the vast majority of food reports are made by 10 countries, with EU countries predominating. The majority of the faulty foodstuffs originate in ten countries with four major producers making no reports. This pattern is very distant from that proposed by the Beijing Declaration which urges all countries to take responsibility for the provision of safe and adequate diets for their nationals.</p
Recommended from our members
Systems Analysis Implicates WAVE2 Complex in the Pathogenesis of Developmental Left-Sided Obstructive Heart Defects.
Genetic variants are the primary driver of congenital heart disease (CHD) pathogenesis. However, our ability to identify causative variants is limited. To identify causal CHD genes that are associated with specific molecular functions, the study used prior knowledge to filter de novo variants from 2,881 probands with sporadic severe CHD. This approach enabled the authors to identify an association between left ventricular outflow tract obstruction lesions and genes associated with the WAVE2 complex and regulation of small GTPase-mediated signal transduction. Using CRISPR zebrafish knockdowns, the study confirmed that WAVE2 complex proteins brk1, nckap1, and wasf2 and the regulators of small GTPase signaling cul3a and racgap1 are critical to cardiac development
A Characterization of Scale Invariant Responses in Enzymatic Networks
An ubiquitous property of biological sensory systems is adaptation: a step
increase in stimulus triggers an initial change in a biochemical or
physiological response, followed by a more gradual relaxation toward a basal,
pre-stimulus level. Adaptation helps maintain essential variables within
acceptable bounds and allows organisms to readjust themselves to an optimum and
non-saturating sensitivity range when faced with a prolonged change in their
environment. Recently, it was shown theoretically and experimentally that many
adapting systems, both at the organism and single-cell level, enjoy a
remarkable additional feature: scale invariance, meaning that the initial,
transient behavior remains (approximately) the same even when the background
signal level is scaled. In this work, we set out to investigate under what
conditions a broadly used model of biochemical enzymatic networks will exhibit
scale-invariant behavior. An exhaustive computational study led us to discover
a new property of surprising simplicity and generality, uniform linearizations
with fast output (ULFO), whose validity we show is both necessary and
sufficient for scale invariance of enzymatic networks. Based on this study, we
go on to develop a mathematical explanation of how ULFO results in scale
invariance. Our work provides a surprisingly consistent, simple, and general
framework for understanding this phenomenon, and results in concrete
experimental predictions
- …
