9 research outputs found

    Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach

    No full text
    Delftia sp. JD2 is a chromium-resistant bacterium that reduces Cr(VI) to Cr(III), accumulates Pb(II), produces the phytohormone indole-3-acetic acid and siderophores, and increases the plant growth performance of rhizobia in co-inoculation experiments. We aimed to analyze the biotechnological potential of JD2 using a genomic approach. JD2 has a genome of 6.76Mb, with 6,051 predicted protein coding sequences and 93 RNA genes (tRNA and rRNA). The indole-acetamide pathway was identified as responsible for the synthesis of indole-3-acetic acid. The genetic information involved in chromium resistance (the gene cluster, chrBACF,) was found. At least 40 putative genes encoding for TonB-dependent receptors, probably involved in the utilization of siderophores and biopolymers, and genes for the synthesis, maturation, exportation and uptake of pyoverdine, and acquisition of Fe-pyochelin and Fe-enterobactin were also identified. The information also suggests that JD2 produce polyhydroxybutyrate, a carbon reserve polymer commonly used for manufacturing petrochemical free bioplastics. In addition, JD2 may degrade lignin-derived aromatic compounds to 2-pyrone-4,6-dicarboxylate, a molecule used in the bio-based polymer industry. Finally, a comparative genomic analysis of JD2, Delftia sp. Cs1-4 and Delftia acidovorans SPH-1 is also discussed. The present work provides insights into the physiology and genetics of a microorganism with many potential uses in biotechnology

    A Review on Pharmacological and Analytical Aspects of Naringenin

    No full text
    corecore