9 research outputs found

    Genetic algorithm optimization and control system design of flexible structures

    Get PDF
    This paper presents an investigation into the deployment of genetic algorithm (GA)-based controller design and optimization for vibration suppression in flexible structures. The potential of GA is explored in three case studies. In the first case study, the potential of GA is demonstrated in the development and optimization of a hybrid learning control scheme for vibration control of flexible manipulators. In the second case study, an active control mechanism for vibration suppression of flexible beam structures using GA optimization technique is proposed. The third case study presents the development of an effective adaptive command shaping control scheme for vibration control of a twin rotor system, where GA is employed to optimize the amplitudes and time locations of the impulses in the proposed control algorithm. The effectiveness of the proposed control schemes is verified in both an experimental and a simulation environment, and their performances are assessed in both the time and frequency domains

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Performance Of Hybrid Learning Control With Input Shaping For Input Tracking And Vibration Suppression Of A Flexible Manipulator

    Get PDF
    The objective of the work reported in this paper is to investigate the performance of an intelligent hybrid iterative learning control scheme with input shaping for input tracking and end–point vibration suppression of a flexible manipulator. The dynamic model of the system is derived using finite element method. Initially, a collocated proportional–derivative (PD) controller utilizing hub–angle and hub–velocity feedback is developed for control of rigid–body motion of the system. This is then extended to incorporate iterative learning control with genetic algorithm (GA) to optimize the learning parameters and a feedforward controller based on input shaping techniques for control of vibration (flexible motion) of the system. Simulation results of the response of the manipulator with the controllers are presented in time and frequency domains. The performance of hybrid learning control with input shaping scheme is assessed in terms of input tracking and level of vibration reduction. The effectiveness of the control schemes in handling various payloads is also studied

    Improving performance in single-link flexible manipulator using hybrid learning control

    Get PDF
    An iterative leaning control method for a single-link flexible manipulator is proposed to achieve precise tracking control and end-point vibration suppression of the system. The learning is done in a feedback configuration with hybrid control and the learning law updates the feedforward input from the error of the previous trial. The dynamic model of the flexible manipulator is derived using the finite element method. Initially, a collocated proportional-derivative (PD) controller utilizing hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. The controller is then extended to incorporate a non-collocated proportional-integral-derivative (PID) controller and a feedforward controller based on input shaping techniques for control of vibration (flexible motion0 of the system. Simulation results of the response of the manipulator with the controllers are presented in the time and frequency domains. The performance of the hybrid iterative learning control scheme is assessed in terms of input tracking and level of vibration reduction in comparison to a conventionally designed collocated PD and non-collocated PID control schemes

    Bi-level fuzzy force shaping controller of a flexible wiper system

    Full text link

    A portable non-contact tremor vibration measurement and classification apparatus

    Get PDF
    Tremors are the most common type of movement disorder and affect the lives of those experiencing them. The efficacy of tremor therapies varies according to the aetiology of the tremor and its correct diagnosis. This study develops a portable measurement device capable of non-contact measurement of the tremor, which could assist in tremor diagnosis and classification. The performance of this device was assessed through a validation process using a shaker at a controlled frequency to measure human tremors, and the device was able to measure vibrations of 50 Hz accurately, which is more than twice the frequency of tremors produced by humans. Then, the device is tested to measure the tremors for two different activation conditions: rest and postural, for both hand and leg. The measured non-contact tremor vibration data successfully led to tremor classification in the subjects already diagnosed using a contact accelerometer

    Local model and controller network design for a single-link flexible manipulator

    No full text
    This paper describes a new genetic learning approach to the construction of a local model network (LMN) and design of a local controller network (LCN) with application to a single-link flexible manipulator. A highly nonlinear flexible manipulator system is modelled using an LMN comprising Autoregressive–moving-average model with exogenous inputs (ARMAX) type local models (LMs) whereas linear Proportional-integral-derivative (PID) type local controllers (LCs) are used to design an LCN. In addition to allowing the simultaneous optimisation of the number of LMs and LCs, model parameters and interpolation function parameters, the approach provides a flexible framework for targeting transparency and generalisation. Simulation results confirm the excellent nonlinear modelling properties of an LM network and illustrate the potential benefits of the proposed LM control scheme

    Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch

    No full text

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    No full text
    corecore