923 research outputs found
Follow Up of Maternally Derived Antibodies Titer against Economically Important Viral Diseases of Chicken
The study was conducted to know the rate of maternally derived antibodies (MDAs) transfer from parents to their offspring and declining the MDAs in their chicks at 0, 7, 14, and 21 days of age against four major poultry viruses like Newcastle disease virus (NDV), Infectious bronchitis virus (IBV), Infectious bursal diseases virus (IBDV), and Avian Reo virus (ARV). The MDAs was studied on Grandparent (GP) to Parent stock (PS), and Parent stock (PS) to broiler at 30 weeks and 50 weeks of age in Cobb-500 broiler strain chicken. The MDAs was measured from serum antibody titer by indirect ELISA test. The MDAs transfer rate against NDV from GP to PS at 50 weeks of age was higher (68.82%) than at 30 weeks of age but in case of PS to broiler it was higher (66.01%) at 30 weeks of age and its persistent rate also higher (7.96%) up to 21th days of age. Against IBV, MDAs transfer rates were higher in PS to broiler than GP to PS of both ages and highest rates were revealed in PS to broiler at 30 weeks of age as 70.72%. On the other hand, among all lines MDAs transfer rates against IBDV was higher (86.94%) in GP to PS at 30 weeks of age. For ARV, the MDAs transfer rates were highest in GP to PS in both ages than PS to broiler and within GP to PS at 50 weeks of age, it was highest (94.87%) than 30 weeks of age. Accordingly, the poultry producer may help to develop an effective vaccination schedule by considering the MDAs from above experiment
Genetic diversity of some chili (Capsicum annuum L.) genotypes
A study on genetic diversity was conducted with 54 Chili (Capsicum annuum L.) genotypes through Mohalanobiss D2 and principal component analysis for twelve quantitative characters viz. plant height, number of secondary branch/plant, canopy breadth , days to first flowering, days to 50% flowering, fruits/plant, 5 fruits weight, fruit length, fruit diameter, seeds/fruit, 1000 seed weight and yield/plant were taken into consideration. Cluster analysis was used for grouping of 54 chili genotypes and the genotypes were fallen into seven clusters. Cluster II had maximum (13) and cluster III had the minimum number (1) of genotypes. The highest inter-cluster distance was observed between cluster I and III and the lowest between cluster II and VII. The characters yield/plant, canopy breadth, secondary branches/plant, plant height and seeds/fruit contributed most for divergence in the studied genotypes. Considering group distance, mean performance and variability the inter genotypic crosses between cluster I and cluster III, cluster III and cluster VI, cluster II and cluster III and cluster III and cluster VII may be suggested to use for future hybridization program. DOI: http://dx.doi.org/10.3329/ijarit.v4i1.21088 Int. J. Agril. Res. Innov. & Tech. 4 (1): 32-35, June, 201
Inequalities in the prevalence of undiagnosed hypertension among Bangladeshi adults: evidence from a nationwide survey
Background
In recent years, developing countries like Bangladesh are facing a higher burden of non-communicable diseases such as hypertension as a result of demographic transition. Prevalence of hypertension is often studied in this setting. However, evidence on undiagnosed hypertension is not widely available in the existing literature. Therefore, the current study focuses on inequalities in the prevalence of undiagnosed hypertension in Bangladesh.
Methods
A total of 8835 participants aged 35+ years were included in this study using nationally representative Bangladesh Demographic and Health Survey 2011 (BDHS). In the survey, systolic blood pressure (SBP) and diastolic blood pressure (DBP) of these participants were measured three times with approximately 10 minutes of an interval between each measurement. Any respondent with either SBP ≥ 140 mmHg or DBP ≥ 90 mmHg was considered as patient with hypertension as per the guidelines from American Heart Association. Among the participants, undiagnosed hypertension was defined as having SBP > =140 mmHg or DBP > =90 mmHg and never taking prescribed medicine or being told by health professionals to lower/control blood pressure. Multiple logistic regression analysis was applied for identifying factors associated with undiagnosed hypertension. Further, socioeconomic inequalities in the prevalence of undiagnosed hypertension were estimated using Concentration Index (C).
Results
We found 978 (59.9% of the total) were undiagnosed among 1685 hypertensive patients studied. Regression analysis showed individuals with being underweight, having poor socioeconomic conditions, and lower educational qualifications were more likely to have undiagnosed hypertension. A similar association between undiagnosed hypertension and socioeconomic quintiles was observed using concentration index (C = − 0.07). On the other hand, individuals from higher age group (50–64 or above), female sex, and Sylhet region were at lower risk of undiagnosed hypertension.
Conclusions
This study showed that a large proportion of the cases with hypertension are remained undiagnosed in Bangladesh, especially among the poor and low educated population. Screening and awareness building initiatives on hypertension should be taken for this group of population to reduce the burden of undiagnosed hypertension
Crystal growth and quantum oscillations in the topological chiral semimetal CoSi
We survey the electrical transport properties of the single-crystalline,
topological chiral semimetal CoSi which was grown via different methods.
High-quality CoSi single crystals were found in the growth from tellurium
solution. The sample's high carrier mobility enables us to observe, for the
first time, quantum oscillations (QOs) in its thermoelectrical signals. Our
analysis of QOs reveals two spherical Fermi surfaces around the R point in the
Brillouin zone corner. The extracted Berry phases of these electron orbits are
consistent with the -2 chiral charge as reported in DFT calculations. Detailed
analysis on the QOs reveals that the spin-orbit coupling induced band-splitting
is less than 2 meV near the Fermi level, one order of magnitude smaller than
our DFT calculation result. We also report the phonon-drag induced large Nernst
effect in CoSi at intermediate temperatures
A topological insulator surface under strong Coulomb, magnetic and disorder perturbations
Three dimensional topological insulators embody a newly discovered state of
matter characterized by conducting spin-momentum locked surface states that
span the bulk band gap as demonstrated via spin-resolved ARPES measurements .
This highly unusual surface environment provides a rich ground for the
discovery of novel physical phenomena. Here we present the first controlled
study of the topological insulator surfaces under strong Coulomb, magnetic and
disorder perturbations. We have used interaction of iron, with a large Coulomb
state and significant magnetic moment as a probe to \textit{systematically test
the robustness} of the topological surface states of the model topological
insulator BiSe. We observe that strong perturbation leads to the
creation of odd multiples of Dirac fermions and that magnetic interactions
break time reversal symmetry in the presence of band hybridization. We also
present a theoretical model to account for the altered surface of BiSe.
Taken collectively, these results are a critical guide in manipulating
topological surfaces for probing fundamental physics or developing device
applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with
arXiv:1009.621
Ripple modulated electronic structure of a 3D topological insulator
3D topological insulators, similar to the Dirac material graphene, host
linearly dispersing states with unique properties and a strong potential for
applications. A key, missing element in realizing some of the more exotic
states in topological insulators is the ability to manipulate local electronic
properties. Analogy with graphene suggests a possible avenue via a topographic
route by the formation of superlattice structures such as a moir\'e patterns or
ripples, which can induce controlled potential variations. However, while the
charge and lattice degrees of freedom are intimately coupled in graphene, it is
not clear a priori how a physical buckling or ripples might influence the
electronic structure of topological insulators. Here we use Fourier transform
scanning tunneling spectroscopy to determine the effects of a one-dimensional
periodic buckling on the electronic properties of Bi2Te3. By tracking the
spatial variations of the scattering vector of the interference patterns as
well as features associated with bulk density of states, we show that the
buckling creates a periodic potential modulation, which in turn modulates the
surface and the bulk states. The strong correlation between the topographic
ripples and electronic structure indicates that while doping alone is
insufficient to create predetermined potential landscapes, creating ripples
provides a path to controlling the potential seen by the Dirac electrons on a
local scale. Such rippled features may be engineered by strain in thin films
and may find use in future applications of topological insulators.Comment: Nature Communications (accepted
A computational study on fluid flow and heat transfer through a rotating curved duct with rectangular cross section
The understanding of fluid flow and heat transfer (HT) through a rotating curved duct (RCD) is important for different engineering applications. The available literature improved the understanding of the fluid flow and HT through a large-curvature rotating duct. However, the comprehensive knowledge of fluid flow and HT through an RCD with small curvature is little known. This numerical study aims to perform fluid flow characterization and HT through an RCD with curvature ratio 0.001. The spectral based numerical approach investigates the effects of rotation on fluid flow and HT for the Taylor number -1000≤TTTT≤1500. A constant pressure gradient force, the Dean number Dn = 100, and a constant buoyancy force parameter, the Grashof number Gr = 500 are used for the numerical simulation. Fortran code is developed for the numerical computations and Tecplot software is used for the post-processing purpose. The numerical study investigates steady solutions and a structure of two-branches of steady solutions is obtained for positive rotation. The transient solution reports the transitional flow patterns and HT through the rotating duct, and two- to four-vortex solutions are observed. In case of negative rotation, time-dependent solutions show that the Coriolis force exhibits an opposite effect to that of the curvature so that the flow characteristics exhibit various flow instabilities. The numerical result shows that convective HT is increased with the increase of rotation and highly complex secondary flow patterns influence the overall HT from the heated wall to the fluid. To validate the numerical results, a comparison with the experimental data is provided, which shows that a good agreement is attained between the numerical and experimental investigations
A Review of Different Applications of Wireless Sensor Network (WSN) in Monitoring Rehabilitation
Parkinson’s disease is a neurodegenerative brain disorder that affects movement. The lack of dopamine in the brain cells causes patients have lesser ability to regulate movement and emotions as time goes on. There is no cure for this disease. Although drug therapies are successful for some patients, most of the patients usually develop motor complications. In this paper, we presented our work towards the comparison of several wireless sensor network (WSN) systems for monitoring Parkinson’s patients. The designs of each system are explored. The parts being considered to design a wireless sensor network and limitations are discussed. These findings helped us to suggest a possible wireless sensor network system to supervise Parkinson’s diseases patients for a more extended period of time
COVID-19 Knowledge, Attitudes, and Practices Among People in Bangladesh: Telephone-Based Cross-sectional Survey
Background: The world has been grappling with the COVID-19 pandemic, a dire public health crisis, since December 2019. Preventive and control measures have been adopted to reduce the spread of COVID-19. To date, the public’s knowledge, attitudes, and practices regarding COVID-19 across Bangladesh have been poorly understood. Therefore, it is important to assess people’s knowledge, attitudes, and practices (KAP) toward the disease and suggest appropriate strategies to combat COVID-19 effectively.
Objective: This study aimed to assess the KAP of Bangladeshi people toward COVID-19 and to identify their determinants.
Methods: We conducted a country-wide cross-sectional telephonic survey from May 7 to 29, 2020. A purposive sampling method was applied, and adult Bangladeshi citizens who have mobile phones were approached to participate in the survey. Interviews were conducted based on verbal consent. Multiple logistic regression analyses and several tests were performed to identify the factors associated with KAP related to COVID-19.
Results: A total of 492 of 576 Bangladeshi adults aged 18 years and above completed the interview, with a response rate of 85.4% (492/576). Of the 492 participants, 321 (65.2%) were male, and 304 (61.8%) lived in a rural area. Mean scores for knowledge, attitudes, and practices were 10.56 (SD 2.86), 1.24 (SD 0.83), and 3.17 (SD 1.5), respectively. Among the 492 respondents, 273 (55.5%) had poor knowledge, and 251 (49%) expressed a negative attitude; 192 out of 359 respondents (53.5%) had poor practices toward COVID-19. Mean scores of knowledge, attitudes, and practices differed significantly across various demographic and socioeconomic groups. Rural residents had lower mean scores of knowledge (mean 9.8, SD 3.1, P<.001) and adherence to appropriate practice measures (mean 4, SD 1.4, P<.001) compared to their urban counterparts. Positive and statistically strong correlations between knowledge and attitudes (r=0.21, P<.001), knowledge and practices (r=0.45, P<.001), and attitudes and practices (r=0.27, P<.001) were observed. Television (53.7%) was identified as the major source of knowledge regarding COVID-19. Almost three-quarters of the respondents (359/492, 73%) went outside the home during the lockdown period. Furthermore, the study found that good knowledge (odds ratio [OR] 3.13, 95% CI 2.03-4.83, and adjusted OR 2.33, 95% CI 1.16-4.68) and a positive attitude (OR 2.43, 95% CI 1.59-3.72, and adjusted OR 3.87, 95% CI 1.95-7.68) are significantly associated with better practice of COVID-19 health measures.
Conclusions: Evidence-informed and context-specific risk communication and community engagement, and a social and behavior change communication strategy against COVID-19 should be developed in Bangladesh based on the findings of this study, targeting different socioeconomic groups
Recommended from our members
MERLIN - A meV resolution beamline at the ALS
An ultra-high resolution beamline is being constructed at the Advanced Light Source (ALS) for the study of low energy excitations in strongly correlated systems with the use of high-resolution inelastic scattering and angle-resolved photoemission. This new beamline, given the acronym Merlin (for meV resolution line), will cover the energy range 10-150 eV. The monochromator has fixed entrance and exit slits and a plane mirror that can illuminate a spherical grating at the required angle of incidence (as in the SX-700 mechanism). The monochromator can be operated in two different modes. In the highest resolution mode, the energy scanning requires translating the monochromator chamber (total travel 1.1 m) as well as rotating the grating and the plane mirror in front of the grating. The resolution in this mode is practically determined by the slits width. In the second mode, the scanning requires rotating the grating and the plane mirror. This mode can be used to scan a few eV without a significant resolution loss. The source for the beamline is a 1.9 m long, 90 mm period quasi periodic EPU. The expected flux at the sample is higher than 10 photons/s at a resolving power of 5 × 10 in the energy range 16-130 eV. A second set of gratings can be used to obtain higher flux at the expense of resolution. © 2007 American Institute of Physics. 11
- …