11 research outputs found

    Study of Radiologic Technologists’ Perceptions of Picture Archiving and Communication System (PACS) Competence and Educational Issues in Western Australia

    Get PDF
    Although the implementation of picture archiving and communication system (PACS) could increase productivity of radiology departments, this depends on factors such as the PACS competence of radiologic technologists (RTs). The purpose of this study was to investigate the RTs’ perceptions of PACS competence and educational issues in Western Australia (WA). A hardcopy questionnaire was distributed to WA RTs for obtaining their perceptions of PACS competence and educational issues. Descriptive (percentage of frequency, mean and standard deviation) and inferential statistics (t test and analysis of variance) were used to analyze the responses of the multiple choice and five-point scale questions from the returned questionnaires. The questionnaire response rate was 57.7 % (173 out of 300). The mean values of all PACS competence questions except questions 2e–g are in the range of 3.9–4.9, i.e., around competent to very competent. Participants indicated they received adequate PACS training (mean 3.8). Statistically significant variables influencing RTs’ perceptions of their PACS competence and educational issues including the age (p < 0.01), gender (p < 0.05), years of practice (p < 0.005–0.05), primary duty (p < 0.05), medical imaging qualification (p < 0.001), general computer skills (p < 0.001), and type of PACS education received (p < 0.001–0.05). The WA RTs indicated that they were competent in using the modality workstation, PACS and radiology information system, and received adequate training. However, future PACS education programs should be tailored to different RTs’ groups. For example, multiple training modules might be necessary to support the PACS competence development of older RTs and those with lower general computer literacy

    Reviewing the integration of patient data: how systems are evolving in practice to meet patient needs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The integration of Information Systems (IS) is essential to support shared care and to provide consistent care to individuals – patient-centred care. This paper identifies, appraises and summarises studies examining different approaches to integrate patient data from heterogeneous IS.</p> <p>Methods</p> <p>The literature was systematically reviewed between 1995–2005 to identify articles mentioning patient records, computers and data integration or sharing.</p> <p>Results</p> <p>Of 3124 articles, 84 were included describing 56 distinct projects. Most of the projects were on a regional scale. Integration was most commonly accomplished by messaging with pre-defined templates and middleware solutions. HL7 was the most widely used messaging standard. Direct database access and web services were the most common communication methods. The user interface for most systems was a Web browser. Regarding the type of medical data shared, 77% of projects integrated diagnosis and problems, 67% medical images and 65% lab results. More recently significantly more IS are extending to primary care and integrating referral letters.</p> <p>Conclusion</p> <p>It is clear that Information Systems are evolving to meet people's needs by implementing regional networks, allowing patient access and integration of ever more items of patient data. Many distinct technological solutions coexist to integrate patient data, using differing standards and data architectures which may difficult further interoperability.</p

    Psychoeducation for Patients with Naso-pharyngeal Carcinoma Undergoing Radiation Therapy

    No full text
    Theme: Recognition and treatment of Distress in Cancer: Focus for the Next Centur

    <title>DICOM and imaging informatics-based radiation therapy (RT) server</title>

    No full text
    Medical Imaging 2002 : PACS and Integrated Medical Information Systems : Design and Evaluation, San Diego, CA, 26-28 Feb, 2002Radiation therapy (RT) is an image intensive treatment. It requires images from projection X-rays, CT, MR, PET for tumor localization, treatment planning and verification of treatment plans. It also needs patient information, images and their processing for tumor localization and dose computation to ensure the delivery of uniform high dose to the target but avoidance of sensitive structures. In these processes, PACS and imaging informatics technologies are used extensively. However, they are not integrated with these technologies as a complete radiation treatment system. Currently RT treatment still relies mostly on tedious manual image and data transfer methods because the community as a whole has not championed the concept of system integration heavily. System integration of RT treatment has many benefits including lower equipment and operation costs, streamline treatment procedures, and better healthcare delivery to the patient. In this paper, we discuss the concept of a DICOM and imaging informatics-based RT server as an attempt to integrate diverse healthcare information systems, imaging modalities and RT equipment into one seamless treatment system.School of OptometryRefereed conference pape

    A HIPAA-Compliant Architecture for Securing Clinical Images

    No full text
    The Health Insurance Portability and Accountability Act (HIPAA, instituted April 2003) Security Standards mandate health institutions to protect health information against unauthorized use or disclosure. One approach to addressing this mandate is by utilizing user access control and generating audit trails of the various authorized as well as unauthorized user access of health data. Although most current clinical image systems [e.g., picture archiving and communication system (PACS)] have components that generate log files for application debugging purposes, there is a lack of methodology to obtain and synthesize the pertinent data from the large volumes of log data generated by these multiple components within a PACS. We have designed a HIPAA-compliant architecture specifically for tracking and auditing the image workflow of clinical imaging systems such as PACS. As an initial first step, we developed HIPAA-compliant auditing system (H-CAS) based on parts of this HIPAA-compliant architecture. H-CAS was implemented within a test-bed PACS simulator located in the Image Processing and Informatics lab at the University of Southern California. Evaluation scenarios were developed where different user types performed legal and illegal access of PACS image data within each of the different components in the PACS simulator. Results were based on whether the scenarios of unauthorized access were correctly identified and documented as well as on normal operational activity. Integration and implementation pitfalls were also noted and included

    Defining the PACS Profession: An Initial Survey of Skills, Training, and Capabilities for PACS Administrators

    No full text
    The need for specialized individuals to manage picture archiving and communications systems (PACS) has been recognized with the creation of a new professional title: PACS administrator. This position requires skill sets that bridge the current domains of radiology technologists (RTs), information systems analysts, and radiology administrators. Health care organizations, however, have reported difficfiulty in defining the functions that a PACS administrator should perform—a challenge compounded when the tries to combine this complex set of capabilities into one individual. As part of a larger effort to define the PACS professional, we developed an extensive but not exclusive consensus list of business, technical, and behavioral competencies desirable in the dedicated PACS professional. Through an on-line survey, radiologists, RTs, information technology specialists, corporate information officers, and radiology administrators rated the importance of these competencies. The results of this survey are presented, and the implications for implementation in training and certification efforts are discussed

    Monitoring the PACS Implementation Process in a Large University Hospital—Discrepancies Between Radiologists and Physicians

    Get PDF
    Successfully introducing a new technology in a health-care setting is not a walk in the park. Many barriers need to be overcome, not only technical and financial but also human barriers. In this study, we focus on the human barriers to health-care information systems’ implementation. We monitored the acceptance of a Picture Archiving and Communication System (PACS) by radiologists and hospital physicians in a large Belgian university hospital. Hereto, questionnaires were taken pre-implementation (T1) and 1 year after the radiology department stopped printing film (T2). The framework we used to perform the study was the Unified Theory of Acceptance and Use of Technology. Main findings were that both groups were positive toward PACS prior to the introduction and that each group was even more positive at T2 with extensive PACS experience. In general, the ratings of the radiologists were higher than those of the physicians, as the radiologists experienced more of the benefits of PACS and had to use PACS throughout the day. Two factors were salient for predicting users’ intention to use PACS: the usefulness of PACS (performance expectancy) and the availability of support of any kind (facilitating conditions). The results show that our approach was successful. Both radiologists and physicians give evidence of an excellent level of user acceptance. We can conclude that the implementation of PACS into our hospital has succeeded
    corecore