147 research outputs found
Orbit spaces of free involutions on the product of two projective spaces
Let be a finitistic space having the mod 2 cohomology algebra of the
product of two projective spaces. We study free involutions on and
determine the possible mod 2 cohomology algebra of orbit space of any free
involution, using the Leray spectral sequence associated to the Borel fibration
. We also
give an application of our result to show that if has the mod 2 cohomology
algebra of the product of two real projective spaces (respectively complex
projective spaces), then there does not exist any -equivariant
map from for (respectively ), where
is equipped with the antipodal involution.Comment: 14 pages, to appear in Results in Mathematic
Black Hole Chromosphere at the LHC
If the scale of quantum gravity is near a TeV, black holes will be copiously
produced at the LHC. In this work we study the main properties of the light
descendants of these black holes. We show that the emitted partons are closely
spaced outside the horizon, and hence they do not fragment into hadrons in
vacuum but more likely into a kind of quark-gluon plasma. Consequently, the
thermal emission occurs far from the horizon, at a temperature characteristic
of the QCD scale. We analyze the energy spectrum of the particles emerging from
the "chromosphere", and find that the hard hadronic jets are almost entirely
suppressed. They are replaced by an isotropic distribution of soft photons and
hadrons, with hundreds of particles in the GeV range. This provides a new
distinctive signature for black hole events at LHC.Comment: Incorporates changes made for the version to be published in Phys.
Rev. D. Additional details provided on the effect of the chromosphere in
cosmic ray shower
Phenomenology of Randall-Sundrum Black Holes
We explore the phenomenology of microscopic black holes in the
Randall-Sundrum (RS) model. We consider the canonical framework in which both
gauge and matter fields are confined to the brane and only gravity spills into
the extra dimension. The model is characterized by two parameters, the mass of
the first massive graviton , and the curvature of the RS
anti-de Sitter space. We compute the sensitivity of present and future cosmic
ray experiments to various regions of and and compare with that
of Runs I and II at the Tevatron. As part of our phenomenological analysis, we
examine constraints placed on by AdS/CFT considerations.Comment: Version to appear in Physical Review D; contains additional analysis
on sensitivity of OW
Black Holes from Cosmic Rays: Probes of Extra Dimensions and New Limits on TeV-Scale Gravity
If extra spacetime dimensions and low-scale gravity exist, black holes will
be produced in observable collisions of elementary particles. For the next
several years, ultra-high energy cosmic rays provide the most promising window
on this phenomenon. In particular, cosmic neutrinos can produce black holes
deep in the Earth's atmosphere, leading to quasi-horizontal giant air showers.
We determine the sensitivity of cosmic ray detectors to black hole production
and compare the results to other probes of extra dimensions. With n \ge 4 extra
dimensions, current bounds on deeply penetrating showers from AGASA already
provide the most stringent bound on low-scale gravity, requiring a fundamental
Planck scale M_D > 1.3 - 1.8 TeV. The Auger Observatory will probe M_D as large
as 4 TeV and may observe on the order of a hundred black holes in 5 years. We
also consider the implications of angular momentum and possible exponentially
suppressed parton cross sections; including these effects, large black hole
rates are still possible. Finally, we demonstrate that even if only a few black
hole events are observed, a standard model interpretation may be excluded by
comparison with Earth-skimming neutrino rates.Comment: 30 pages, 18 figures; v2: discussion of gravitational infall, AGASA
and Fly's Eye comparison added; v3: Earth-skimming results modified and
strengthened, published versio
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
- âŠ