5 research outputs found

    Wildlife Reservoirs of Canine Distemper Virus Resulted in a Major Outbreak in Danish Farmed Mink (<em>Neovison vison</em>)

    Get PDF
    A major outbreak of canine distemper virus (CDV) in Danish farmed mink (Neovison vison) started in the late summer period of 2012. At the same time, a high number of diseased and dead wildlife species such as foxes, raccoon dogs, and ferrets were observed. To track the origin of the outbreak virus full-length sequencing of the receptor binding surface protein hemagglutinin (H) was performed on 26 CDV's collected from mink and 10 CDV's collected from wildlife species. Subsequent phylogenetic analyses showed that the virus circulating in the mink farms and wildlife were highly identical with an identity at the nucleotide level of 99.45% to 100%. The sequences could be grouped by single nucleotide polymorphisms according to geographical distribution of mink farms and wildlife. The signaling lymphocytic activation molecule (SLAM) receptor binding region in most viruses from both mink and wildlife contained G at position 530 and Y at position 549; however, three mink viruses had an Y549H substitution. The outbreak viruses clustered phylogenetically in the European lineage and were highly identical to wildlife viruses from Germany and Hungary (99.29% – 99.62%). The study furthermore revealed that fleas (Ceratophyllus sciurorum) contained CDV and that vertical transmission of CDV occurred in a wild ferret. The study provides evidence that wildlife species, such as foxes, play an important role in the transmission of CDV to farmed mink and that the virus may be maintained in the wild animal reservoir between outbreaks

    Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ‹Π΅ ΠΈ ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Π½Ρ‹Π΅ состояния Π² слоистых наноструктурах Β«ΠΌΠ΅Ρ‚Π°Π»Π» – диэлСктрик»

    No full text
    Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Кона – Π¨Π΅ΠΌΠ° Ρ– ΠΌΠΎΠ΄Π΅Π»Ρ– ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΆΠ΅Π»Π΅ Π· урахуванням сил Π΄Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ зобраТСння Ρ– Π·ΠΎΠ½ΠΈ провідності Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΠΊΠ° Π²ΠΈΠΊΠΎΠ½Π°Π½Ρ– самоузгодТСні Ρ€ΠΎΠ·Ρ€Π°Ρ…ΡƒΠ½ΠΊΠΈ ΠΏΡ€ΠΎΡ„Ρ–Π»Ρ–Π² ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π»Ρ–Π², Ρ€ΠΎΠ±Ρ–Ρ‚ Π²ΠΈΡ…ΠΎΠ΄Ρƒ Ρ– бар’єрів Π¨ΠΎΡ‚Ρ‚ΠΊΡ– для асимСтричних ΠΌΠ΅Ρ‚Π°Π»-Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… ΠΏΠ»Ρ–Π²ΠΊΠΎΠ²ΠΈΡ… систСм, Π² яких Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΠΊΠΈ ΠΏΠΎ ΠΎΠ±ΠΈΠ΄Π²Π° Π±ΠΎΠΊΠΈ Π²Ρ–Π΄ Π½Π°Π½ΠΎΠΏΠ»Ρ–Π²ΠΊΠΈ ΠΌΠ΅Ρ‚Π°Π»Ρƒ Ρ€Ρ–Π·Π½Ρ–. Π”Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ оточСння Π² Ρ†Ρ–Π»ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΡ— Π·ΠΌΡ–Π½ΠΈ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π²ΠΈΡ…ΠΎΠ΄Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Π² Ρ– ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΡ— Π΅Π½Π΅Ρ€Π³Ρ–Ρ—. Π— урахуванням Π·ΠΎΠ½ΠΈ провідності Π΄Ρ–Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΠΊΠ° (Ρ‚Π²Π΅Ρ€Π΄Ρ– Ρ–Π½Π΅Ρ€Ρ‚Π½Ρ– Π³Π°Π·ΠΈ, ) дослідТСно Ρ€ΠΎΠ·ΠΌΡ–Ρ€Π½Ρ– Π΅Ρ„Π΅ΠΊΡ‚ΠΈ, Π²ΠΏΠ»ΠΈΠ² Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… мас Π½Π° Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½Ρ– Ρ‚Π° анігіляційні характСристики ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Ρ–Π² Ρƒ ΡˆΠ°Ρ€ΡƒΠ²Π°Ρ‚ΠΈΡ… структурах Ρ–Π· самоузгодТСними Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΈΠΌΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΈΠΌΠΈ профілями, ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π² Π½Π°Π±Π»ΠΈΠΆΠ΅Π½Π½Ρ– Π»ΠΎΠΊΠ°Π»ΡŒΠ½ΠΎΡ— густини Ρ– Π·ΡˆΠΈΡ‚ΠΈΠΌΠΈ Π· ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π»Π°ΠΌΠΈ Π΄Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ зобраТСння. ΠžΠ±Π³ΠΎΠ²ΠΎΡ€ΡŽΡ”Ρ‚ΡŒΡΡ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Π»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Π°Ρ‚ΠΎΠΌΠ° ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½Ρ–ΡŽ Π² наносандвічах. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ порівняння Π· СкспСримСнтами.Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Кона – Π¨Π΅ΠΌΠ° ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΆΠ΅Π»Π΅ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ сил Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ изобраТСния ΠΈ Π·ΠΎΠ½Ρ‹ проводимости диэлСктрика Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ самосогласованныС расчСты ΠΏΡ€ΠΎΡ„ΠΈΠ»Π΅ΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ², Ρ€Π°Π±ΠΎΡ‚ Π²Ρ‹Ρ…ΠΎΠ΄Π° ΠΈ Π±Π°Ρ€ΡŒΠ΅Ρ€ΠΎΠ² Π¨ΠΎΡ‚Ρ‚ΠΊΠΈ для асиммСтричных ΠΌΠ΅Ρ‚Π°Π»Π»-диэлСктричСских ΠΏΠ»Π΅Π½ΠΎΡ‡Π½Ρ‹Ρ… систСм, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… диэлСктрики ΠΏΠΎ ΠΎΠ±Π΅ стороны Π½Π°Π½ΠΎΠΏΠ»Π΅Π½ΠΊΠΈ ΠΌΠ΅Ρ‚Π°Π»Π»Π° Ρ€Π°Π·Π½Ρ‹Π΅. ДиэлСктричСскоС окруТСния Π² Ρ†Π΅Π»ΠΎΠΌ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠΌΡƒ измСнСнию Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π²Ρ‹Ρ…ΠΎΠ΄Π° элСктронов ΠΈ повСрхностной энСргии. Π‘ ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π·ΠΎΠ½Ρ‹ проводимости диэлСктрика (Ρ‚Π²Π΅Ρ€Π΄Ρ‹Π΅ ΠΈΠ½Π΅Ρ€Ρ‚Π½Ρ‹Π΅ Π³Π°Π·Ρ‹, ) исслСдованы Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Π΅ эффСкты, влияниС эффСктивных масс Π½Π° энСргСтичСскиС ΠΈ аннигиляционныС характСристики ΠΏΠΎΠ·ΠΈΡ‚Ρ€ΠΎΠ½ΠΎΠ² Π² слоистых структурах с самосогласованными Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΌΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ профилями, построСнными Π² ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ локальной плотности ΠΈ ΡΡˆΠΈΡ‚Ρ‹ΠΌΠΈ с ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°ΠΌΠΈ Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ изобраТСния. ΠžΠ±ΡΡƒΠΆΠ΄Π°Π΅Ρ‚ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π°Ρ‚ΠΎΠΌΠ° позитрония Π² наносандвичах. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС с экспСримСнтами.Within the framework of modified method of Kohn-Sham and stable jelly model with taking into account image forces and conduction band profiles of the dielectric self-consistent calculations of potential profiles, and the work functions, the Schottky barriers for asymmetric metal dielectric film systems in which insulators on both sides of the metal nanofilms are different were done. Dielectric environment generally leads to negative changes in the electron work function and surface energy. In view of the conduction band of the dielectric (solid inert gases, ) dimensional effects, the impact of effective mass to energy and positron annihilation characteristics in layered structures with self-consistent hybrid potential profiles, which built in the local density approximation and crosslinked with image potentials were investigated. The possibility of localization of positronium atoms in nanosandvich is discussed. Comparison with the experiments were done
    corecore