20 research outputs found

    Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers

    Get PDF
    Microsatellites and gene-derived markers are still underrepresented in the core molecular linkage map of common bean compared to other types of markers. In order to increase the density of the core map, a set of new markers were developed and mapped onto the RIL population derived from the ‘BAT93’ × ‘Jalo EEP558’ cross. The EST-SSR markers were first characterized using a set of 24 bean inbred lines. On average, the polymorphism information content was 0.40 and the mean number of alleles per locus was 2.7. In addition, AFLP and RGA markers based on the NBS-profiling method were developed and a subset of the mapped RGA was sequenced. With the integration of 282 new markers into the common bean core map, we were able to place markers with putative known function in some existing gaps including regions with QTL for resistance to anthracnose and rust. The distribution of the markers over 11 linkage groups is discussed and a newer version of the common bean core linkage map is proposed

    Saturation of an Intra-Gene Pool Linkage Map: Towards a Unified Consensus Linkage Map for Fine Mapping and Synteny Analysis in Common Bean

    Get PDF
    Map-based cloning and fine mapping to find genes of interest and marker assisted selection (MAS) requires good genetic maps with reproducible markers. In this study, we saturated the linkage map of the intra-gene pool population of common bean DOR364×BAT477 (DB) by evaluating 2,706 molecular markers including SSR, SNP, and gene-based markers. On average the polymorphism rate was 7.7% due to the narrow genetic base between the parents. The DB linkage map consisted of 291 markers with a total map length of 1,788 cM. A consensus map was built using the core mapping populations derived from inter-gene pool crosses: DOR364×G19833 (DG) and BAT93×JALO EEP558 (BJ). The consensus map consisted of a total of 1,010 markers mapped, with a total map length of 2,041 cM across 11 linkage groups. On average, each linkage group on the consensus map contained 91 markers of which 83% were single copy markers. Finally, a synteny analysis was carried out using our highly saturated consensus maps compared with the soybean pseudo-chromosome assembly. A total of 772 marker sequences were compared with the soybean genome. A total of 44 syntenic blocks were identified. The linkage group Pv6 presented the most diverse pattern of synteny with seven syntenic blocks, and Pv9 showed the most consistent relations with soybean with just two syntenic blocks. Additionally, a co-linear analysis using common bean transcript map information against soybean coding sequences (CDS) revealed the relationship with 787 soybean genes. The common bean consensus map has allowed us to map a larger number of markers, to obtain a more complete coverage of the common bean genome. Our results, combined with synteny relationships provide tools to increase marker density in selected genomic regions to identify closely linked polymorphic markers for indirect selection, fine mapping or for positional cloning

    Satellyptus: analysis and database of microsatellites from ESTs of Eucalyptus

    No full text
    The main goal of our research was to search for SSRs in the Eucalyptus EST FORESTs database (using a software for mining SSR-motifs). With this objective, we created a database for cataloging Eucalyptus EST-derived SSRs, and developed a bioinformatics tool, named Satellyptus, for finding and analyzing microsatellites in the Eucalyptus EST database. The search for microsatellites in the FORESTs database containing 71,115 Eucalyptus EST sequences (52.09 Mb) revealed 20,530 SSRs in 15,621 ESTs. The SSR abundance detected on the Eucalyptus ESTs database (29% or one microsatellite every four sequences) is considered very high for plants. Amongst the categories of SSR motifs, the climeric (37%) and trimeric ones (33%) predominated. The AG/CT motif was the most frequent (35.15%) followed by the trimeric CCG/CGG (12.81%). From a random sample of 1,217 sequences, 343 microsatellites in 265 SSR-containing sequences were identified. Approximately 48% of these ESTs containing microsatellites were homologous to proteins with known biological function. Most of the microsatellites detected in Eucalyptus ESTs were positioned at either the 5′ or 3′ end. Our next priority involves the design of flanking primers for codominant SSR loci, which could lead to the development of a set of microsatellite-based markers suitable for marker-assisted Eucalyptus breeding programs

    Transcription Termination and Chimeric RNA Formation Controlled by <em>Arabidopsis thaliana</em> FPA

    Get PDF
    Alternative cleavage and polyadenylation influence the coding and regulatory potential of mRNAs and where transcription termination occurs. Although widespread, few regulators of this process are known. The Arabidopsis thaliana protein FPA is a rare example of a trans-acting regulator of poly(A) site choice. Analysing fpa mutants therefore provides an opportunity to reveal generic consequences of disrupting this process. We used direct RNA sequencing to quantify shifts in RNA 3' formation in fpa mutants. Here we show that specific chimeric RNAs formed between the exons of otherwise separate genes are a striking consequence of loss of FPA function. We define intergenic read-through transcripts resulting from defective RNA 3' end formation in fpa mutants and detail cryptic splicing and antisense transcription associated with these read-through RNAs. We identify alternative polyadenylation within introns that is sensitive to FPA and show FPA-dependent shifts in IBM1 poly(A) site selection that differ from those recently defined in mutants defective in intragenic heterochromatin and DNA methylation. Finally, we show that defective termination at specific loci in fpa mutants is shared with dicer-like 1 (dcl1) or dcl4 mutants, leading us to develop alternative explanations for some silencing roles of these proteins. We relate our findings to the impact that altered patterns of 3' end formation can have on gene and genome organisation
    corecore