21 research outputs found

    Thermophysical properties and oxygen transport in (Thx,Pu1-x)O2

    Get PDF
    Using Molecular Dynamics, this paper investigates the thermophysical properties and oxygen transport of (Thx,Pu1−x)O2 (0 ≀ x ≀ 1) between 300-3500 K. In particular, the superionic transition is investigated and viewed via the thermal dependence of lattice parameter, linear thermal expansion coefficient, enthalpy and specific heat at constant pressure. Oxygen diffusivity and activation enthalpy are also investigated. Below the superionic temperature an increase of oxygen diffusivity for certain compositions of (Thx,Pu1−x)O2 compared to the pure end members is predicted. Oxygen defect formation enthalpies are also examined, as they underpin the superionic transition temperature and the increase in oxygen diffusivity. The increase in oxygen diffusivity for (Thx,Pu1−x)O2 is explained in terms of lower oxygen defect formation enthalpies for (Thx,Pu1−x)O2 than PuO2 and ThO2, while links are drawn between the superionic transition temperature and oxygen Frenkel disorder

    Pipe and grain boundary diffusion of He in UO₂

    Get PDF
    Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion in UO2. Calculations were carried out for the {100}, {110} and {111} h110i edge dislocations, the screw h110i dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300 - 3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. An Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundar

    Importance of elastic finite-size effects: Neutral defects in ionic compounds

    Get PDF
    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms

    Using molecular dynamics to predict the solidus and liquidus of mixed oxides (Th,U)O2, (Th,Pu)O2 and (Pu,U)O2

    Get PDF
    Molecular dynamics (MD) was used to establish a mechanistic basis for the experimentally observed reduction in liquidus and solidus temperatures below the melting point of the end-members for the mixed oxides (Th, U)O2, (Th, Pu)O2 and (Pu, U)O2. This dip is found at additions of the oxide with higher melting point to the oxide with the lower melting point. There are many causes suggested for the dip; here the distribution of the cation Frenkel energy for the mixed oxides caused by the local environment is proposed as a contributor. Furthermore, a variant of the moving interface method which yields information on the position of the solidus and liquidus boundaries, is used to predict the phase diagrams of these systems

    Impact of uniaxial strain and doping on oxygen diffusion in CeO2

    Get PDF
    Doped ceria is an important electrolyte for solid oxide fuel cell applications. Molecular dynamics simulations have been used to investigate the impact of uniaxial strain along the directions and rare-earth doping (Yb, Er, Ho, Dy, Gd, Sm, Nd, and La) on oxygen diffusion. We introduce a new potential model that is able to describe the thermal expansion and elastic properties of ceria to give excellent agreement with experimental data. We calculate the activation energy of oxygen migration in the temperature range 900-1900K for both unstrained and rare-earth doped ceria systems under tensile strain. Uniaxial strain has a considerable effect in lowering the activation energies of oxygen migration. A more pronounced increase in oxygen diffusivities is predicted at the lower end of the temperature range for all the dopants considered

    Gold and silver diffusion in germanium: a thermodynamic approach

    Get PDF
    Diffusion properties are technologically important in the understanding of semiconductors for the efficent formation of defined nanoelectronic devices. In the present study we employ experimental data to show that bulk materials properties (elastic and expansivity data) can be used to describe gold and silver diffusion in germanium for a wide temperature range (702–1177 K). Here we show that the so-called cBΩ model thermodynamic model, which assumes that the defect Gibbs energy is proportional to the isothermal bulk modulus and the mean volume per atom, adequately metallic diffusion in germanium

    Swelling due to the partition of soluble fission products between the grey phase and uranium dioxide

    No full text
    The change in volume associated with the partition of soluble cations from uranium dioxide into the (Ba,Sr)ZrO3 grey phase has been investigated using atomic scale simulations. Here past work on the thermodynamic drive for the segregation of trivalent and tetravalent cations from uranium dioxide is built upon in the context of fuel swelling. Only small tetravalent cations segregate into the grey phase and this is predicted to result in an overall reduction in fuel volume. Individual trivalent cations that segregate, can cause either a contraction or an expansion of the overall fuel volume. Cr2O3 doped UO2 promotes co-partition forming mixed cation clusters in the grey phase and causing an overall reduction in fuel volume for all trivalent cations. This may have implications for fuel performance and may alter other fuel swelling mechanisms.© 2013 Elsevier Ltd

    Partition of soluble fission products between the grey phase, ZrO2 and uranium dioxide

    No full text
    The energies to remove fission products from UO2 or UO2+x and incorporate them into BaZrO3, SrZrO3 (grey phase constituent phases) and ZrO2 have been calculated using atomistic scale simulation. These energies provide the thermodynamic drive for partition of soluble fission products between UO2 or UO2+x and these secondary oxide constituents of the fuel system. Tetravalent cation partition into BaZrO3, SrZrO3 and ZrO2 was only preferable for species with smaller radii than Zr4+, regardless of uranium dioxide stoichiometry. Under stoichiometric conditions both the larger and the smaller trivalent cations were found to segregate to BaZrO3 but only the smaller fuel additive elements Cr3+ and Fe3+ segregate to SrZrO3. Partition from UO2+x was always unfavourable for trivalent cations. Additions of excess Cr3+ (as a fuel additive) are predicted make the partition into BaZrO3 and SrZrO3 more favourable from UO2 for the larger trivalent cations. Trivalent fission products with radii smaller than or equal to that of Sm3+ were identified to segregate into ZrO2 only from UO2. No segregation to SrO or BaO is predicted. © 2013, Elsevier B.V

    Modelling the thermal conductivity of (UₓTh₁-ₓ)O₂ and (UₓPu₁-ₓ)O₂

    No full text
    The degradation of thermal conductivity due to the non-uniform cation lattice of (UₓTh₁-ₓ)O₂ and (UₓPu₁-ₓ)O₂ solid solutions has been investigated by molecular dynamics, using the non-equilibrium method, from 300 to 2000 K. Degradation of thermal conductivity is predicted in (UₓTh₁-ₓ)O₂ and (UₓPu₁-ₓ)O₂ as compositions deviate from the pure end members: UO₂, PuO₂ and ThO₂. The reduction in thermal conductivity is most apparent at low temperatures where phonon-defect scattering dominates over phonon–phonon interactions. The effect is greater for (UₓTh₁-ₓ)O₂ than for (UₓPu₁-ₓ)O₂ due to the greater mismatch in cation size and mass. Parameters for analytical expressions have been developed that describe the predicted thermal conductivities over the full temperature and compositional ranges. These expressions may be used in higher level fuel performance codes

    Oxygen Diffusion in Gd-doped Mixed Oxides

    No full text
    Molecular dynamics simulations have been performed to investigate oxygen transport in (UxPux−1)0.95Gd0.05O1.975, (UxThx−1)0.95Gd0.05O1.975 and (PuxThx−1)0.95Gd0.05O1.975 between 1000 and 3200 K. Oxygen diffusivity and corresponding activation energies are examined and compared to values for the undoped (UxPux−1)O2, (UxThx−1)O2 and (PuxThx−1)O2 systems where compositions between end members display enhanced diffusivity. Below the superionic transition oxygen diffusivity for the Gd doped systems is orders of magnitude greater compared to their undoped counterparts. However, enhanced diffusivity for doped mixed actinide cation compositions is not observed compared to doped end members. Changes in activation energy suggest changes in diffusion regime, which correspond to the creation of thermally activated oxygen defects
    corecore