1,241 research outputs found

    Residual erythropoiesis protects against myocardial hemosiderosis in transfusion-dependent thalassemia by lowering labile plasma iron via transient generation of apotransferrin

    Get PDF
    Cardiosiderosis is a leading cause of mortality in transfusion-dependent thalassemias. Plasma non-transferrin-bound iron and its redox-active component, labile plasma iron, are key sources of iron loading in cardiosiderosis. Risk factors were identified in 73 patients with or without cardiosiderosis. Soluble transferrin receptor-1 levels were significantly lower in patients with cardiosiderosis (odds ratio 21). This risk increased when transfusion-iron loading rates exceeded the erythroid transferrin uptake rate (derived from soluble transferrin receptor-1) by >0.21mg/kg/d (odds ratio 48). Labile plasma iron was >3-fold higher where this uptake rate threshold was exceeded, but non-transferrin-bound iron and transferrin saturation were comparable. Cardiosiderosis risk was also decreased in patients with low liver iron, ferritin and labile plasma iron, or high bilirubin, reticulocyte counts or hepcidin. We hypothesized that high erythroid transferrin uptake rate decreases cardiosiderosis through increased erythroid re-generation of apotransferrin. To test this, iron uptake and intracellular reactive oxygen species were examined in HL-1 cardiomyocytes under conditions modelling transferrin effects on non-transferrin-bound iron speciation with ferric citrate. Intracellular iron and reactive oxygen species increased with ferric citrate concentrations especially where iron-to-citrate ratios exceeded 1:100, i.e. conditions favoring kinetically labile monoferric rather than oligomer species. Excess iron-binding equivalents of apotransferrin inhibited iron uptake, decreased intracellular reactive oxygen species and labile plasma iron, under conditions favoring monoferric species. In conclusion, high transferrin iron utilisation, relative to the transfusion-iron load rate, decreases the cardiosiderotic risk. A putative mechanism is the transient re-generation of apotransferrin by an active erythron, rapidly binding labile plasma iron-detectable ferric monocitrate species

    Interaction of Transfusion and Iron Chelation in Thalassemias

    Get PDF
    The relationship between blood transfusion intensity, chelatable iron pools, and extrahepatic iron distribution is described in thalassemia. Risk factors for cardiosiderosis are discussed with particular reference to the balance of transfusional iron loading rate and transferrin-iron utilization rate as marked by plasma levels of soluble transferrin receptors. Low transfusion regimens increase residual erythropoiesis allowing for apotransferrin-dependent clearance of non–transferrin-bound iron species otherwise destined for myocardium. The impact of transfusion rates on chelation dosing required for iron balance is also shown

    Intravenous iron preparations transiently generate non-transferrin-bound iron from two proposed pathways

    Get PDF
    Intravenous iron-carbohydrate complex preparations (IVIPs) are non-interchangeable pro-drugs: their pharmacokinetics (PK) varies determined by semi-crystalline iron core and carbohydrate shell structures, influences pharmacodynamics (PD) and thus efficacy and safety. Examining PK/PD relationships of 3 IVIPs we identify a two-pathway model of transient NTBI generation following single dose administration. 28 hypoferremic non-anemic patients randomized to 200mg iron as ferric carboxymaltose (Fe-carboxymaltose), iron sucrose (Fe-sucrose), iron isomaltoside 1000 (Fe-isomaltoside-1000), n=8/arm, or placebo, n=4, on a 2-week PK/PD study, had samples analysed for total serum iron, IVIP-iron, transferrin-bound iron (TBI) by HPLC-ICP-MS, transferrin saturation (TSAT), serum ferritin (s-Ferritin) by standard methods, non-TBI (NTBI) and hepcidin as published before. IVIP-dependent increases in these parameters returned to baseline in 48-150h, except for s-Ferritin and TSAT. NTBI was low with Fe-isomaltoside-1000 (0.13µM at 8h), rapidly increased with Fe-sucrose (0.8µM at 2h, 1.25µM at 4h), and delayed for Fe-carboxymaltose (0.57µM at 24h). NTBI AUCs were 7-fold greater for Fe-carboxymaltose and Fe-sucrose than for Fe-isomaltoside-1000. Hepcidin peak time varied, but not AUC or mean levels. s-Ferritin levels and AUC were highest for Fe-carboxymaltose and greater than placebo for all IVIPs. We propose 2 mechanisms for the observed NTBI kinetics: rapid and delayed NTBI appearance consistent with direct (circulating IVIP-to-plasma) and indirect (IVIP-to-macrophage-to-plasma) iron release based on IVIP plasma half-life and s-Ferritin dynamics. IVIPs generate different, broadly stability- and PK-dependent, NTBI and s-Ferritin signatures, which may influence iron bioavailability, efficacy and safety. Longer-term studies should link NTBI exposure to subsequent safety and efficacy parameters and potential clinical consequences

    Extracts of Thai Perilla frutescens nutlets attenuate tumour necrosis factor-α-activated generation of microparticles, ICAM-1 and IL-6 in human endothelial cells

    Get PDF
    Elevation of endothelial microparticles (EMPs) play an important role in the progression of inflammation-related vascular diseases such as cardiovascular diseases (CVDs). Thai perilla (Perilla frutescens) nutlets are rich in phenolic compounds and flavonoids that exert potent antioxidant and anti-inflammatory effects. We found that the ethyl acetate (EA) and ethanol (Eth) extracts of Thai perilla nutlets contain phenolic compounds such as luteolin, apigenin, chryseoriol and their glycosides, which exhibit antioxidant activity. The goal of the present study was to investigate the effects of the extracts on endothelial activation and EMPs generation in tumour necrosis factor-α (TNF-α)-induced EA.hy926 cells. We found that TNF-α (10 ng/ml) activated EA.hy926 cells and subsequently generated EMPs. Pre-treatment with the extracts significantly attenuated endothelial activation by decreasing the expression of the intracellular adhesion molecule-1 (ICAM-1) in a dose-dependent manner. Only the Eth extract showed protective effects against overproduction of interleukin-6 (IL-6) in the activated cells. Furthermore, the extracts significantly reduced TNF-α-enhanced EMPs generation in a dose-dependent manner. In conclusion, Thai perilla nutlet extracts, especially the Eth extract, may have potential to protect endothelium against vascular inflammation through the inhibition of endothelial activation and the generation of endothelial microparticles (EMPs)

    Evolution of Mycobacterium ulcerans and other mycolactone-producing mycobacteria from a common Mycobacterium marinum progenitor

    Get PDF
    It had been assumed that production of the cytotoxic polyketide mycolactone was strictly associated with Mycobacterium ulcerans, the causative agent of Buruli ulcer. However, a recent study has uncovered a broader distribution of mycolactone-producing mycobacteria (MPM) that includes mycobacteria cultured from diseased fish and frogs in the United States and from diseased fish in the Red and Mediterranean Seas. All of these mycobacteria contain versions of the M. ulcerans pMUM plasmid, produce mycolactones, and show a high degree of genetic relatedness to both M. ulcerans and Mycobacterium marinum. Here, we show by multiple genetic methods, including multilocus sequence analysis and DNA-DNA hybridization, that all MPM have evolved from a common M. marinum progenitor to form a genetically cohesive group among a more diverse assemblage of M. marinum strains. Like M. ulcerans, the fish and frog MPM show multiple copies of the insertion sequence IS2404. Comparisons of pMUM and chromosomal gene sequences demonstrate that plasmid acquisition and the subsequent ability to produce mycolactone were probably the key drivers of speciation. Ongoing evolution among MPM has since produced at least two genetically distinct ecotypes that can be broadly divided into those typically causing disease in ectotherms (but also having a high zoonotic potential) and those causing disease in endotherms, such as humans

    Luspatercept stimulates erythropoiesis, increases iron utilization, and redistributes body iron in transfusion-dependent thalassemia

    Get PDF
    Luspatercept, a ligand-trapping fusion protein, binds select TGF-β superfamily ligands implicated in thalassemic erythropoiesis, promoting late-stage erythroid maturation. Luspatercept reduced transfusion burden in the BELIEVE trial (NCT02604433) of 336 adults with transfusion-dependent thalassemia (TDT). Analysis of biomarkers in BELIEVE offers novel physiological and clinical insights into benefits offered by luspatercept. Transfusion iron loading rates decreased 20% by 1.4 g (~7 blood units; median iron loading rate difference: −0.05 ± 0.07 mg Fe/kg/day, p< .0001) and serum ferritin (s-ferritin) decreased 19.2% by 269.3 ± 963.7 μg/L (p < .0001), indicating reduced macrophage iron. However, liver iron content (LIC) did not decrease but showed statistically nonsignificant increases from 5.3 to 6.7 mg/g dw. Erythropoietin, growth differentiation factor 15, soluble transferrin receptor 1 (sTfR1), and reticulocytes rose by 93%, 59%, 66%, and 112%, respectively; accordingly, erythroferrone increased by 51% and hepcidin decreased by 53% (all p < .0001). Decreased transfusion with luspatercept in patients with TDT was associated with increased erythropoietic markers and decreasing hepcidin. Furthermore, s-ferritin reduction associated with increased erythroid iron incorporation (marked by sTfR1) allowed increased erythrocyte marrow output, consequently reducing transfusion needs and enhancing rerouting of hemolysis (heme) iron and non-transferrin-bound iron to the liver. LIC increased in patients with intact spleens, consistent with iron redistribution given the hepcidin reduction. Thus, erythropoietic and hepcidin changes with luspatercept in TDT lower transfusion dependency and may redistribute iron from macrophages to hepatocytes, necessitating the use of concomitant chelator cover for effective iron management

    Factors affecting the prey preferences of jackals (Canidae)

    Get PDF
    Prey selection by carnivores can be affected by top-down and bottom-up factors. For example, large carnivores may facilitate food resources for mesocarnivores by providing carcasses to scavenge, however mesocarnivores may hunt large prey themselves, and their diets might be affected by prey size and behaviour. We reviewed jackal diet studies and determined how the presence of large carnivores and various bottom-up factors affected jackal prey selection. We found 20 studies of black-backed jackals (Canis mesomelas) from 43 different times or places, and 13 studies of Eurasian golden jackals (Canis aureus) from 23 different times or places reporting on 3900 and 2440 dietary records (i.e. scats or stomach contents), respectively. Black-backed jackals significantly preferred small ( 120 kg) hider species and follower species of any body size. They had a preferred and accessible prey weight range of 14-26 kg, and a predator to ideal prey mass ratio of 1:3.1. Eurasian golden jackal significantly prefer to prey on brown hare (Lepus europaeus; 4 kg), yielding a predator to preferred prey mass ratio of 1:0.6, and a preferred and accessible prey weight range of 0 – 4 kg and 0 – 15 kg, respectively. Prey preferences of jackals differed significantly in the presence of apex predators, but it was not entirely due to carrion availability of larger prey species. Our results show that jackal diets are affected by both top-down and bottom-up factors, because apex predators as well as prey size and birthing behaviour affected prey preferences of jackals. A better understanding of the factors affecting jackal prey preferences, as presented here, could lead to greater acceptance of mesocarnivores and reduced human-wildlife conflict

    The use of microbubbles to target drug delivery

    Get PDF
    Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This review focuses on the characteristics of microbubbles that give them therapeutic properties and some important aspects of ultrasound parameters that are known to influence microbubble-mediated drug delivery. In addition, current studies involving this novel therapeutical application of microbubbles will be discussed
    • …
    corecore