170 research outputs found

    Acquisition of pneumococci specific effector and regulatory Cd4+ T cells localising within human upper respiratory-tract mucosal lymphoid tissue

    Get PDF
    The upper respiratory tract mucosa is the location for commensal Streptococcus (S.) pneumoniae colonization and therefore represents a major site of contact between host and bacteria. The CD4(+) T cell response to pneumococcus is increasingly recognised as an important mediator of immunity that protects against invasive disease, with data suggesting a critical role for Th17 cells in mucosal clearance. By assessing CD4 T cell proliferative responses we demonstrate age-related sequestration of Th1 and Th17 CD4(+) T cells reactive to pneumococcal protein antigens within mucosal lymphoid tissue. CD25(hi) T cell depletion and utilisation of pneumococcal specific MHCII tetramers revealed the presence of antigen specific Tregs that utilised CTLA-4 and PDL-1 surface molecules to suppress these responses. The balance between mucosal effector and regulatory CD4(+) T cell immunity is likely to be critical to pneumococcal commensalism and the prevention of unwanted pathology associated with carriage. However, if dysregulated, such responses may render the host more susceptible to invasive pneumococcal infection and adversely affect the successful implementation of both polysaccharide-conjugate and novel protein-based pneumococcal vaccines

    Acute physiological responses of blood flow restriction between high‐intensity interval repetitions in trained cyclists

    Get PDF
    lood flow restriction (BFR) is increasingly being used to enhance aerobic performance in endurance athletes. This study examined physiological responses to BFR applied in recovery phases within a high-intensity interval training (HIIT) session in trained cyclists. Eleven competitive road cyclists (mean ± SD, age: 28 ± 7 years, body mass: 69 ± 6 kg, peak oxygen uptake: 65 ± 9 mL · kg−1 · min−1) completed two randomised crossover conditions: HIIT with (BFR) and without (CON) BFR applied during recovery phases. HIIT consisted of six 30-s cycling bouts at an intensity equivalent to 85% of maximal 30-s power (523 ± 93 W), interspersed with 4.5-min recovery. BFR (200 mmHg, 12 cm cuff width) was applied for 2-min in the early recovery phase between each interval. Pulmonary gas exchange (V̇O2, V̇CO2, and V̇E), tissue oxygen saturation index (TSI), heart rate (HR), and serum vascular endothelial growth factor concentration (VEGF) were measured. Compared to CON, BFR increased V̇CO2 and V̇E during work bouts (both p 0.05). In early recovery, BFR decreased TSI, V̇O2, V̇CO2, and V̇E (all p 0.8) versus CON, with no change in HR (p > 0.05). In late recovery, when BFR was released, V̇O2, V̇CO2, V̇E, and HR increased, but TSI decreased versus CON (all p 0.8). There was a greater increase in VEGF at 3-h post-exercise in BFR compared to CON (p 0.8). Incorporating BFR into HIIT recovery phases altered physiological responses compared to exercise alone

    Experimental infection in calves with a specific subtype of verocytotoxin-producing Escherichia coli O157:H7 of bovine origin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Sweden, a particular subtype of verocytotoxin-producing <it>Escherichia coli </it>(VTEC) O157:H7, originally defined as being of phage type 4, and carrying two <it>vtx</it><sub>2 </sub>genes, has been found to cause the majority of reported human infections during the past 15 years, including both sporadic cases and outbreaks. One plausible explanation for this could be that this particular subtype is better adapted to colonise cattle, and thereby may be excreted in greater concentrations and for longer periods than other VTEC O157:H7 subtypes.</p> <p>Methods</p> <p>In an experimental study, 4 calves were inoculated with 10<sup>9 </sup>colony forming units (cfu) of strain CCUG 53931, representative of the subtype VTEC O157:H7 (PT4;<it>vtx</it><sub>2</sub>;<it>vtx</it><sub>2c</sub>). Two un-inoculated calves were co-housed with the inoculated calves. Initially, the VTEC O157:H7 strain had been isolated from a dairy herd with naturally occurring infection and the farm had previously also been linked to human infection with the same strain. Faecal samples were collected over up to a 2-month period and analysed for VTEC O157 by immuno-magnetic separation (IMS), and IMS positive samples were further analysed by direct plating to elucidate the shedding pattern. Samples were also collected from the pharynx.</p> <p>Results</p> <p>All inoculated calves proved culture-positive in faeces within 24 hours after inoculation and the un-inoculated calves similarly on days 1 and 3 post-inoculation. One calf was persistently culture-positive for 43 days; in the remainder, the VTEC O157:H7 count in faeces decreased over the first 2 weeks. All pharyngeal samples were culture-negative for VTEC O157:H7.</p> <p>Conclusion</p> <p>This study contributes with information concerning the dynamics of a specific subtype of VTEC O157:H7 colonisation in dairy calves. This subtype, VTEC O157:H7 (PT4;<it>vtx</it><sub>2;</sub><it>vtx</it><sub>2c</sub>), is frequently isolated from Swedish cattle and has also been found to cause the majority of reported human infections in Sweden during the past 15 years. In most calves, inoculated with a representative strain of this specific subtype, the numbers of shed bacteria declined over the first two weeks. One calf could possibly be classified as a high-shedder, excreting high levels of the bacterium for a prolonged period.</p

    Lysosomotropic agents as HCV entry inhibitors

    Get PDF
    HCV has two envelop proteins named as E1 and E2 which play an important role in cell entry through two main pathways: direct fusion at the plasma membrane and receptor-mediated endocytosis. Fusion of the HCV envelope proteins is triggered by low pH within the endosome. Lysosomotropic agents (LA) such as Chloroquine and Ammonium chloride (NH4Cl) are the weak bases and penetrate in lysosome as protonated form and increase the intracellular pH. To investigate the antiviral effect of LA (Chloroquine and NH4Cl) on pH dependent endocytosis, HCV pseudoparticles (HCVpp) of 1a and 3a genotype were produced and used to infect liver cells. The toxicological effects of Chloroquine and NH4Cl were tested in liver cells through MTT cell proliferation assay. For antiviral screening of Chloroquine and NH4Cl, liver cells were infected with HCVpp of 3a and 1a genotype in the presence or absence of different concentrations of Chloroquine and NH4Cl and there luciferase activity was determined by using a luminometer. The results demonstrated that Chloroquine and NH4Cl showed more than 50% reduction of virus infectivity at 50 μM and 10 mM concentrations respectively. These results suggest that inhibition of HCV at fusion step by increasing the lysosomal pH will be better option to treat chronic HCV

    Tuberculosis associated with Mycobacterium tuberculosis Beijing and non-Beijing genotypes: a clinical and immunological comparison

    Get PDF
    BACKGROUND: The Mycobacterium tuberculosis Beijing genotype is biologically different from other genotypes. We aimed to clinically and immunologically compare human tuberculosis caused by Beijing and non-Beijing strains. METHODS: Pulmonary tuberculosis patients were prospectively enrolled and grouped by their M. tuberculosis genotypes. The clinical features, plasma cytokine levels, and cytokine gene expression levels in peripheral blood mononuclear cells (PBMC) were compared between the patients in Beijing and non-Beijing groups. RESULTS: Patients in the Beijing group were characterized by significantly lower frequency of fever (odds ratio, 0.12, p = 0.008) and pulmonary cavitation (odds ratio, 0.2, p = 0.049). Night sweats were also significantly less frequent by univariate analysis, and the duration of cough prior to diagnosis was longer in Beijing compared to non-Beijing groups (medians, 60 versus 30 days, p = 0.048). The plasma and gene expression levels of interferon (IFN) γ and interleukin (IL)-18 were similar in the two groups. However, patients in the non-Beijing group had significantly increased IL-4 gene expression (p = 0.018) and lower IFN-γ : IL-4 cDNA copy number ratios (p = 0.01). CONCLUSION: Patients with tuberculosis caused by Beijing strains appear to be less symptomatic than those who have disease caused by other strains. Th1 immune responses are similar in patients infected with Beijing and non-Beijing strains, but non-Beijing strains activate more Th2 immune responses compared with Beijing strains, as evidenced by increased IL-4 expression

    Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS)

    Get PDF
    Verotoxigenic Escherichia coli (VTEC) are a specialized group of E. coli that can cause severe colonic disease and renal failure. Their pathogenicity derives from virulence factors that enable the bacteria to colonize the colon and deliver extremely powerful toxins known as verotoxins (VT) or Shiga toxins (Stx) to the systemic circulation. The recent devastating E. coli O104:H4 epidemic in Europe has shown how helpless medical professionals are in terms of offering effective therapies. By examining the sources and distribution of these bacteria, and how they cause disease, we will be in a better position to prevent and treat the inevitable future cases of sporadic disease and victims of common source outbreaks. Due to the complexity of pathogenesis, it is likely a multitargeted approach is warranted. Developments in terms of these treatments are discussed

    Stearoyl-CoA Desaturase-1 (SCD1) Augments Saturated Fatty Acid-Induced Lipid Accumulation and Inhibits Apoptosis in Cardiac Myocytes

    Get PDF
    Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis

    Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    Get PDF
    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation
    corecore