165 research outputs found

    Relationship between Tibial conformation, cage size and advancement achieved in TTA procedure

    Get PDF
    Previous studies have suggested that there is a theoretical discrepancy between the cage size and the resultant tibial tuberosity advancement, with the cage size consistently providing less tibial tuberosity advancement than predicted. The purpose of this study was to test and quantify this in clinical cases. The hypothesis was that the advancement of the tibial tuberosity as measured by the widening of the proximal tibia at the tibial tuberosity level after a standard TTA, will be less than the cage sized used, with no particular cage size providing a relative smaller or higher under-advancement, and that the conformation of the proximal tibia will have an influence on the amount of advancement achieved

    The Major Roles of DNA Polymerases Epsilon and Delta at the Eukaryotic Replication Fork Are Evolutionarily Conserved

    Get PDF
    Coordinated replication of eukaryotic genomes is intrinsically asymmetric, with continuous leading strand synthesis preceding discontinuous lagging strand synthesis. Here we provide two types of evidence indicating that, in fission yeast, these two biosynthetic tasks are performed by two different replicases. First, in Schizosaccharomyces pombe strains encoding a polΞ΄-L591M mutator allele, base substitutions in reporter genes placed in opposite orientations relative to a well-characterized replication origin are strand-specific and distributed in patterns implying that PolΞ΄ is primarily involved in lagging strand replication. Second, in strains encoding a polΞ΅-M630F allele and lacking the ability to repair rNMPs in DNA due to a defect in RNase H2, rNMPs are selectively observed in nascent leading strand DNA. The latter observation demonstrates that abundant rNMP incorporation during replication can be tolerated and that they are normally removed in an RNase H2-dependent manner. This provides strong physical evidence that PolΞ΅ is the primary leading strand replicase. Collectively, these data and earlier results in budding yeast indicate that the major roles of PolΞ΄ and PolΞ΅ at the eukaryotic replication fork are evolutionarily conserved

    Targeting the EGFR in ovarian cancer with the tyrosine kinase inhibitor ZD1839 (β€œIressa”).

    Get PDF
    The modulating effects of the orally active epidermal growth factor receptor-specific tyrosine kinase inhibitor ZD 1839 (β€˜Iressa’) on cell growth and signalling were evaluated in four ovarian cancer cell lines (PE01, PE04, SKOV-3, OVCAR-5) that express the epidermal growth factor receptor, and in A2780, which is epidermal growth factor receptor-negative. Transforming growth factor-Ξ± stimulated growth was completely inhibited by concentrations of ZD 1839 β©Ύ0.3 μM in the epidermal growth factor receptor-expressing cell lines, as were transforming growth factor-Ξ± stimulated phosphorylation of the epidermal growth factor receptor and downstream components of the MAP kinase and PI-3 kinase signalling cascades. Growth inhibition in the absence of added transforming growth factor-Ξ± was also observed which could be consistent with suppression of action of autocrine epidermal growth factor receptor-activating ligands by ZD 1839. In support of this, transforming growth factor-Ξ±, EGF and amphiregulin mRNAs were detected by RT–PCR in the epidermal growth factor receptor-expressing cell lines. ZD 1839 inhibited growth of the PE04 ovarian cancer xenograft at 200 mg kg(βˆ’1) day(βˆ’1). These data lend further support to the view that targeting the epidermal growth factor receptor in ovarian cancer could have therapeutic benefit. British Journal of Cancer (2002) 86, 456–462. DOI: 10.1038/sj/bjc/6600058 www.bjcancer.com Β© 2002 The Cancer Research Campaig

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research

    Inhibition of transforming growth factor Ξ± (TGF-Ξ±)-mediated growth effects in ovarian cancer cell lines by a tyrosine kinase inhibitor ZM 252868

    Get PDF
    The modulating effects of the epidermal growth factor (EGF) receptor-specific tyrosine kinase inhibitor ZM 252868 on cell growth and signalling have been evaluated in four ovarian carcinoma cell lines PE01, PE04, SKOV-3 and PE01CDDP. Transforming growth factor Ξ± (TGF-Ξ±)-stimulated growth was completely inhibited by concentrations β‰₯ 0.3 ΞΌM in the PE01 and PE04 cell lines and by β‰₯ 0.1 ΞΌM in SKOV-3 cells. TGF-Ξ± inhibition of PE01CDDP growth was reversed by concentrations β‰₯ 0.1 ΞΌM ZM 252868. TGF-Ξ±-stimulated tyrosine phosphorylation of both the EGF receptor and c-erbB2 receptor in all four cell lines. The inhibitor ZM 252868, at concentrations β‰₯ 0.3 ΞΌM, completely inhibited TGF-Ξ±-stimulated tyrosine phosphorylation of the EGF receptor and reduced phosphorylation of the c-erbB2 protein. EGF-activated EGF receptor tyrosine kinase activity was completely inhibited by 3 ΞΌM ZM 252868 in PE01, SKOV-3 and PE01CDDP cells. These data indicate that the EGF receptor-targeted TK inhibitor ZM 252868 can inhibit growth of ovarian carcinoma cells in vitro consistent with inhibition of tyrosine phosphorylation at the EGF receptor. Β© 1999 Cancer Research Campaig

    M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment

    Get PDF
    Group A Streptococcus is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Cell wall anchored pili were recently described in several species of pathogenic streptococci, and in the case of GAS, these surface appendages were demonstrated to facilitate epithelial cell adherence. Here we use targeted mutagenesis to evaluate the contribution of pilus expression to virulence of the globally disseminated M1T1 GAS clone, the leading agent of both GAS pharyngitis and severe invasive infections. We confirm that pilus expression promotes GAS adherence to pharyngeal cells, keratinocytes, and skin. However, in contrast to findings reported for group B streptococcal and pneumococcal pili, we observe that pilus expression reduces GAS virulence in murine models of necrotizing fasciitis, pneumonia and sepsis, while decreasing GAS survival in human blood. Further analysis indicated the systemic virulence attenuation associated with pilus expression was not related to differences in phagocytic uptake, complement deposition or cathelicidin antimicrobial peptide sensitivity. Rather, GAS pili were found to induce neutrophil IL-8 production, promote neutrophil transcytosis of endothelial cells, and increase neutrophil release of DNA-based extracellular traps, ultimately promoting GAS entrapment and killing within these structures

    Effects of steroids and angiotensin converting enzyme inhibition on circumferential strain in boys with Duchenne muscular dystrophy: a cross-sectional and longitudinal study utilizing cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroid use has prolonged ambulation in Duchenne muscular dystrophy (DMD) and combined with advances in respiratory care overall management has improved such that cardiac manifestations have become the major cause of death. Unfortunately, there is no consensus for DMD-associated cardiac disease management. Our purpose was to assess effects of steroid use alone or in combination with angiotensin converting enzyme inhibitors (ACEI) or angiotension receptor blocker (ARB) on cardiovascular magnetic resonance (CMR) derived circumferential strain (Ξ΅<sub>cc</sub>).</p> <p>Methods</p> <p>We used CMR to assess effects of corticosteroids alone (Group A) or in combination with ACEI or ARB (Group B) on heart rate (HR), left ventricular ejection fraction (LVEF), mass (LVM), end diastolic volume (LVEDV) and circumferential strain (Ξ΅<sub>cc</sub>) in a cohort of 171 DMD patients >5 years of age. Treatment decisions were made independently by physicians at both our institution and referral centers and not based on CMR results.</p> <p>Results</p> <p>Patients in Group A (114 studies) were younger than those in Group B (92 studies)(10 Β± 2.4 vs. 12.4 Β± 3.2 years, p < 0.0001), but HR, LVEF, LVEDV and LVM were not different. Although Ξ΅<sub>cc </sub>magnitude was lower in Group B than Group A (-13.8 Β± 1.9 vs. -12.8 Β± 2.0, p = 0.0004), age correction using covariance analysis eliminated this effect. In a subset of patients who underwent serial CMR exams with an inter-study time of ~15 months, Ξ΅<sub>cc </sub>worsened regardless of treatment group.</p> <p>Conclusions</p> <p>These results support the need for prospective clinical trials to identify more effective treatment regimens for DMD associated cardiac disease.</p

    Investigation of the Genes Involved in Antigenic Switching at the vlsE Locus in Borrelia burgdorferi: An Essential Role for the RuvAB Branch Migrase

    Get PDF
    Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et al. in the accompanying article, who also found a requirement for the RuvAB branch migrase. Our results also indicate that the mechanism of switching at vlsE in B. burgdorferi is distinct from switching at pilE in N. gonorrhoeae, which is the only other organism analyzed genetically in detail. Finally, our findings suggest a unique mechanism for switching at vlsE and a role for currently unidentified B. burgdorferi proteins in this process

    PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2

    Get PDF
    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-Ξ³-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as β€œanti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase

    Local Oxidative and Nitrosative Stress Increases in the Microcirculation during Leukocytes-Endothelial Cell Interactions

    Get PDF
    Leukocyte-endothelial cell interactions and leukocyte activation are important factors for vascular diseases including nephropathy, retinopathy and angiopathy. In addition, endothelial cell dysfunction is reported in vascular disease condition. Endothelial dysfunction is characterized by increased superoxide (O2β€’βˆ’) production from endothelium and reduction in NO bioavailability. Experimental studies have suggested a possible role for leukocyte-endothelial cell interaction in the vessel NO and peroxynitrite levels and their role in vascular disorders in the arterial side of microcirculation. However, anti-adhesion therapies for preventing leukocyte-endothelial cell interaction related vascular disorders showed limited success. The endothelial dysfunction related changes in vessel NO and peroxynitrite levels, leukocyte-endothelial cell interaction and leukocyte activation are not completely understood in vascular disorders. The objective of this study was to investigate the role of endothelial dysfunction extent, leukocyte-endothelial interaction, leukocyte activation and superoxide dismutase therapy on the transport and interactions of NO, O2β€’βˆ’ and peroxynitrite in the microcirculation. We developed a biotransport model of NO, O2β€’βˆ’ and peroxynitrite in the arteriolar microcirculation and incorporated leukocytes-endothelial cell interactions. The concentration profiles of NO, O2β€’βˆ’ and peroxynitrite within blood vessel and leukocytes are presented at multiple levels of endothelial oxidative stress with leukocyte activation and increased superoxide dismutase accounted for in certain cases. The results showed that the maximum concentrations of NO decreased ∼0.6 fold, O2β€’βˆ’ increased ∼27 fold and peroxynitrite increased ∼30 fold in the endothelial and smooth muscle region in severe oxidative stress condition as compared to that of normal physiologic conditions. The results show that the onset of endothelial oxidative stress can cause an increase in O2β€’βˆ’ and peroxynitrite concentration in the lumen. The increased O2β€’βˆ’ and peroxynitrite can cause leukocytes priming through peroxynitrite and leukocytes activation through secondary stimuli of O2β€’βˆ’ in bloodstream without endothelial interaction. This finding supports that leukocyte rolling/adhesion and activation are independent events
    • …
    corecore