2,769 research outputs found
SUSY dark matter(s)
We review here the status of different dark matter candidates in the context
of supersymmetric models, in particular the neutralino as a realization of the
WIMP-mechanism and the gravitino. We give a summary of the recent bounds in
direct and indirect detection and also of the LHC searches relevant for the
dark matter question. We discuss also the implications of the Higgs discovery
for the supersymmetric dark matter models and give the prospects for the future
years.Comment: 16 pages, 3 figure
Fyn Kinase regulates GluN2B subunit-dominant NMDA receptors in human induced pluripotent stem cell-derived neurons
NMDA receptor (NMDAR)-mediated fast excitatory neurotransmission is implicated in a broad range of physiological and pathological processes in the mammalian central nervous system. The function and regulation of NMDARs have been extensively studied in neurons from rodents and other non-human species, and in recombinant expression systems. Here, we investigated human NMDARs in situ by using neurons produced by directed differentiation of human induced pluripotent stem cells (iPSCs). The resultant cells showed electrophysiological characteristics demonstrating that they are bona fide neurons. In particular, human iPSC-derived neurons expressed functional ligand-gated ion channels, including NMDARs, AMPA receptors, GABAA receptors, as well as glycine receptors. Pharmacological and electrophysiological properties of NMDAR-mediated currents indicated that these were dominated by receptors containing GluN2B subunits. The NMDAR currents were suppressed by genistein, a broad-spectrum tyrosine kinase inhibitor. The NMDAR currents were also inhibited by a Fyn-interfering peptide, Fyn(39-57), but not a Src-interfering peptide, Src(40-58). Together, these findings are the first evidence that tyrosine phosphorylation regulates the function of NMDARs in human iPSC-derived neurons. Our findings provide a basis for utilizing human iPSC-derived neurons in screening for drugs targeting NMDARs in neurological disorders
Setting limits on Effective Field Theories: the case of Dark Matter
The usage of Effective Field Theories (EFT) for LHC new physics searches is
receiving increasing attention. It is thus important to clarify all the aspects
related with the applicability of the EFT formalism in the LHC environment,
where the large available energy can produce reactions that overcome the
maximal range of validity, i.e. the cutoff, of the theory. We show that this
does forbid to set rigorous limits on the EFT parameter space through a
modified version of the ordinary binned likelihood hypothesis test, which we
design and validate. Our limit-setting strategy can be carried on in its
full-fledged form by the LHC experimental collaborations, or performed
externally to the collaborations, through the Simplified Likelihood approach,
by relying on certain approximations. We apply it to the recent CMS mono-jet
analysis and derive limits on a Dark Matter (DM) EFT model. DM is selected as a
case study because the limited reach on the DM production EFT Wilson
coefficient and the structure of the theory suggests that the cutoff might be
dangerously low, well within the LHC reach. However our strategy can also be
applied to EFT's parametrising the indirect effects of heavy new physics in the
Electroweak and Higgs sectors
The gravitino coupling to broken gauge theories applied to the MSSM
We consider gravitino couplings in theories with broken gauge symmetries. In
particular, we compute the single gravitino production cross section in W+ W-
fusion processes. Despite recent claims to the contrary, we show that this
process is always subdominant to gluon fusion processes in the high energy
limit. The full calculation is performed numerically; however, we give analytic
expressions for the cross section in the supersymmetric and electroweak limits.
We also confirm these results with the use of the effective theory of goldstino
interactions.Comment: 26 pages, 4 figure
TEMPRANILLO is a regulator of juvenility in plants
Many plants are incapable of flowering in inductive daylengths during the early juvenile vegetative phase (JVP). Arabidopsis mutants with reduced expression of TEMPRANILLO (TEM), a repressor of FLOWERING LOCUS T (FT) had a shorter JVP than wild-type plants. Reciprocal changes in mRNA expression of TEM and FT were observed in both Arabidopsis and antirrhinum, which correlated with the length of the JVP. FT expression was induced just prior to the end of the JVP and levels of TEM1 mRNA declined rapidly at the time when FT mRNA levels were shown to increase. TEM orthologs were isolated from antirrhinum (AmTEM) and olive (OeTEM) and were expressed most highly during their juvenile phase. AmTEM functionally complemented AtTEM1 in the tem1 mutant and over-expression of AmTEM prolonged the JVP through repression of FT and CONSTANS (CO). We propose that TEM may have a general role in regulating JVP in herbaceous and woody species
Determining the best method for first-line assessment of neonatal blood glucose levels
Objective: To evaluate and compare the accuracy and performance of two electrochemical glucose meters. To determine the user acceptability of these glucose meters and the ABL 620 Blood Gas Analyser (Radiometer, Copenhagen, Denmark) with an electrochemical glucose oxidase electrode for use in a Level 2 special care baby unit
Solving the mu problem with a heavy Higgs boson
We discuss the generation of the mu-term in a class of supersymmetric models
characterized by a low energy effective superpotential containing a term lambda
S H_1 H_2 with a large coupling lambda~2. These models generically predict a
lightest Higgs boson well above the LEP limit of 114 GeV and have been shown to
be compatible with the unification of gauge couplings. Here we discuss a
specific example where the superpotential has no dimensionful parameters and we
point out the relation between the generated mu-term and the mass of the
lightest Higgs boson. We discuss the fine-tuning of the model and we find that
the generation of a phenomenologically viable mu-term fits very well with a
heavy lightest Higgs boson and a low degree of fine-tuning. We discuss
experimental constraints from collider direct searches, precision data, thermal
relic dark matter abundance, and WIMP searches finding that the most natural
region of the parameter space is still allowed by current experiments. We
analyse bounds on the masses of the superpartners coming from Naturalness
arguments and discuss the main signatures of the model for the LHC and future
WIMP searches.Comment: Extended discussion of the LHC phenomenology, as published on JHEP
plus an addendum on the existence of further extremal points of the
potential. 47 pages, 16 figure
Urinary MicroRNA Profiling in the Nephropathy of Type 1 Diabetes
Background: Patients with Type 1 Diabetes (T1D) are particularly vulnerable to development of Diabetic nephropathy (DN) leading to End Stage Renal Disease. Hence a better understanding of the factors affecting kidney disease progression in T1D is urgently needed. In recent years microRNAs have emerged as important post-transcriptional regulators of gene expression in many different health conditions. We hypothesized that urinary microRNA profile of patients will differ in the different stages of diabetic renal disease. Methods and Findings: We studied urine microRNA profiles with qPCR in 40 T1D with >20 year follow up 10 who never developed renal disease (N) matched against 10 patients who went on to develop overt nephropathy (DN), 10 patients with intermittent microalbuminuria (IMA) matched against 10 patients with persistent (PMA) microalbuminuria. A Bayesian procedure was used to normalize and convert raw signals to expression ratios. We applied formal statistical techniques to translate fold changes to profiles of microRNA targets which were then used to make inferences about biological pathways in the Gene Ontology and REACTOME structured vocabularies. A total of 27 microRNAs were found to be present at significantly different levels in different stages of untreated nephropathy. These microRNAs mapped to overlapping pathways pertaining to growth factor signaling and renal fibrosis known to be targeted in diabetic kidney disease. Conclusions: Urinary microRNA profiles differ across the different stages of diabetic nephropathy. Previous work using experimental, clinical chemistry or biopsy samples has demonstrated differential expression of many of these microRNAs in a variety of chronic renal conditions and diabetes. Combining expression ratios of microRNAs with formal inferences about their predicted mRNA targets and associated biological pathways may yield useful markers for early diagnosis and risk stratification of DN in T1D by inferring the alteration of renal molecular processes. © 2013 Argyropoulos et al
The moment of truth for WIMP Dark Matter
We know that dark matter constitutes 85% of all the matter in the Universe,
but we do not know of what it is made. Amongst the many Dark Matter candidates
proposed, WIMPs (weakly interacting massive particles) occupy a special place,
as they arise naturally from well motivated extensions of the standard model of
particle physics. With the advent of the Large Hadron Collider at CERN, and a
new generation of astroparticle experiments, the moment of truth has come for
WIMPs: either we will discover them in the next five to ten years, or we will
witness the inevitable decline of WIMP paradigm.Comment: To appear in Nature (Nov 18, 2010
Twenty Years of SUGRA
A brief review is given of the developments of mSUGRA and its extensions
since the formulation of these models in 1982. Future directions and prospects
are also discussed.Comment: Invited talk at the International Conference BEYOND-2003, Schloss
Ringberg, Germany, June 10-14, 2003; 21 pages, Late
- …
