94 research outputs found

    DEVELOPMENT OF AN ADVANCED HIGH PRESSURE RATIO TRANSONIC FAN STAGE. PART-I: DESIGN AND ANALYSIS

    Get PDF
    A high performance fan stage of pressure ratio 2.0 is being designed and developed under a joint programme between Chinese Aeronautical Establishment (CAE) China and National Aerospace Laboratories (NAL), Bangalore, India.. Special features of the aerodynamic design are i) forward blade sweep and lean to increase the ability to bear intake distortion ii) reverse camber fan tip to reduce losses via pre compression iii) low aspect ratio of the blades to maximize stall margin. The blade will be fabricated using laminates of Carbon/Epoxy composites with tip shroud so as to limit the blade stress and deformation. Stress analysis was carried out using MSC/NASTRAN Finite Element Package. The fan stage has undergone a series of design improvements. Comparison of typical results obtained at NAL and BUAA is shown for the final version of the fan stage TTT98-29

    Monitoring Functional Capability of Individuals with Lower Limb Amputations Using Mobile Phones

    Get PDF
    To be effective, a prescribed prosthetic device must match the functional requirements and capabilities of each patient. These capabilities are usually assessed by a clinician and reported by the Medicare K-level designation of mobility. However, it is not clear how the K-level designation objectively relates to the use of prostheses outside of a clinical environment. Here, we quantify participant activity using mobile phones and relate activity measured during real world activity to the assigned K-levels. We observe a correlation between K-level and the proportion of moderate to high activity over the course of a week. This relationship suggests that accelerometry-based technologies such as mobile phones can be used to evaluate real world activity for mobility assessment. Quantifying everyday activity promises to improve assessment of real world prosthesis use, leading to a better matching of prostheses to individuals and enabling better evaluations of future prosthetic devices.Max Nader Center for Rehabilitation Technologies and Outcome

    A Comparison of Donor-Acceptor Pairs for Genetically Encoded FRET Sensors: Application to the Epac cAMP Sensor as an Example

    Get PDF
    We recently reported on CFP-Epac-YFP, an Epac-based single polypeptide FRET reporter to resolve cAMP levels in living cells. In this study, we compared and optimized the fluorescent protein donor/acceptor pairs for use in biosensors such as CFP-Epac-YFP. Our strategy was to prepare a wide range of constructs consisting of different donor and acceptor fluorescent proteins separated by a short linker. Constructs were expressed in HEK293 cells and tested for FRET and other relevant properties. The most promising pairs were subsequently used in an attempt to improve the FRET span of the Epac-based cAMP sensor. The results show significant albeit not perfect correlation between performance in the spacer construct and in the Epac sensor. Finally, this strategy enabled us to identify improved sensors both for detection by sensitized emission and by fluorescent lifetime imaging. The present overview should be helpful in guiding development of future FRET sensors

    Autoimmune encephalomyelitis in NOD mice is not initially a progressive multiple sclerosis model.

    Get PDF
    OBJECTIVE: Despite progress in treating relapsing multiple sclerosis (MS), effective inhibition of nonrelapsing progressive MS is an urgent, unmet, clinical need. Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE), provide valuable tools to examine the mechanisms contributing to disease and may be important for developing rational therapeutic approaches for treatment of progressive MS. It has been suggested that myelin oligodendrocyte glycoprotein (MOG) peptide residues 35-55 (MOG35-55 )-induced EAE in nonobese diabetic (NOD) mice resembles secondary progressive MS. The objective was to determine whether the published data merits such claims. METHODS: Induction and monitoring of EAE in NOD mice and literature review. RESULTS: It is evident that the NOD mouse model lacks validity as a progressive MS model as the individual course seems to be an asynchronous, relapsing-remitting neurodegenerative disease, characterized by increasingly poor recovery from relapse. The seemingly progressive course seen in group means of clinical score is an artifact of data handling and interpretation. INTERPRETATION: Although MOG35-55 -induced EAE in NOD mice may provide some clues about approaches to block neurodegeneration associated with the inflammatory penumbra as lesions form, it should not be used to justify trials in people with nonactive, progressive MS. This adds further support to the view that drug studies in animals should universally adopt transparent raw data deposition as part of the publication process, such that claims can adequately be interrogated. This transparency is important if animal-based science is to remain a credible part of translational research in MS.Stichting MS ResearchWellcome TrustMedical Research CouncilNational Multiple Sclerosis Society. Grant Number: RG4132A5/

    Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study

    Get PDF
    BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    Clarifying Differences Among Thrombolysis in Cerebral Infarction Scale Variants

    No full text
    corecore