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Abstract

To be effective, a prescribed prosthetic device must match the functional requirements and capabilities of each patient.
These capabilities are usually assessed by a clinician and reported by the Medicare K-level designation of mobility. However,
it is not clear how the K-level designation objectively relates to the use of prostheses outside of a clinical environment. Here,
we quantify participant activity using mobile phones and relate activity measured during real world activity to the assigned
K-levels. We observe a correlation between K-level and the proportion of moderate to high activity over the course of a
week. This relationship suggests that accelerometry-based technologies such as mobile phones can be used to evaluate real
world activity for mobility assessment. Quantifying everyday activity promises to improve assessment of real world
prosthesis use, leading to a better matching of prostheses to individuals and enabling better evaluations of future
prosthetic devices.
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Introduction

The projected number of individuals with amputations in the

United States is expected to more than double in the next 40 years,

primarily due to an aging population suffering from dysvascular

diseases and diabetes [1]. Because 95% of all amputations caused

by dysvascular diseases are lower-limb amputations, the need for

lower-limb prostheses is expected to rise significantly higher. Given

the majority of dysvascular amputations are in the elderly (56%

over 65 years), and dysvascular conditions are often comorbid with

impaired mobility prior to amputation, it is important to provide

health care that is tailored to the functional capabilities of each

individual.

In lower-limb prosthetics, there is a range in complexity, price,

and most importantly functional tradeoffs. Lower-limb prostheses

can range from a simple single-axis knee to more complicated

multi-axis powered knees and ankles used to enable a more natural

gait [2,3]. A single axis mechanical knee uses mechanical friction

as an adjustable brake to control the swinging of the artificial limb.

Unfortunately, due to the constant friction, single-axis knees limit

activities of daily living that might require variable cadence.

Powered knees use advanced sensor technology including accel-

erometers and load sensors to provide actuation, enabling a better

ability to perform most activities of daily living. Prices for

prostheses can vary from the $45 Jaipur Foot, provided free of

charge to beneficiaries [4] to the Power knee which can cost more

than $100,000 [5]. Choosing a prosthesis that is well matched to a

patient’s needs and capabilities allows more advanced devices to

be allocated to the individuals that can most benefit.

There are a number of conventional methods available for

assessing the ability of individuals with lower-limb amputations to

undertake activities of daily living. These can be divided generally

into self-report and physical measures. A number of thoroughly

researched questionnaires can be used to estimate the difficulty of

activities of daily living for individuals with amputations, including

the Prosthesis Evaluation Questionnaire (PEQ) [6], Orthotics and

Prosthetics Users’ Survey (OPUS) [7], Questionnaire for Persons

with a Transfemoral Amputation (Q-TFA) [8], SIGAM mobility

grades [9], Prosthetic Profile of the Amputee (PPA) [10] and the

Locomotor Capabilities Index (LCI) [10]. However, self-report is

inherently subjective, which can lead to increased variability and

bias. Another way to infer the mobility at home is from physical

measures of ambulation obtained in a clinical setting. For

example, the six minute walk, the functional ambulation profile,

and Timed Up and Go (TUG) can be applied to individuals

wearing prostheses [11], as well as combined measures specific to

individuals with amputations, such as the Amputee Mobility

Predictor [12]. These self-report questionnaires and physical

measures can then be used by clinicians to infer the individual’s

current capabilities in daily life.
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The standard system of classifying functional capability for

individuals with lower-limb amputations is the Medicare Func-

tional Classification Level, known as K-levels (Table 1) [13]. By

identifying the activity level, physicians and prosthetists evaluate

which prosthesis would be most beneficial. This is not simply to

save money. K0 individuals may only need a prosthesis for

aesthetic reasons. Lower K-level ambulators, who need more

stability and only have limited community ambulation, may be

adversely affected by the uncertainty inherent in powered

prostheses. However, at higher K-levels advanced prostheses can

have a dramatic impact on quality of life. Currently, K-levels are

assigned to individuals based on the judgment of a clinician, often

aided by clinical measurements at the time of assignment. Using

data from everyday use of prosthetic devices promises to make this

user-device matching more efficient.

One way to accurately assess mobility during daily activities is

by having individuals wear activity monitors. The most common

sensors are accelerometers, which measure displacement of the

device as well as changes in orientation relative to gravity [14]. For

example, by attaching an accelerometer to a shoe, one can

estimate the amount of time running and walking based on the

presence of periodic motion. To recognize specific activities, there

have been many studies placing accelerometers at specific

locations on the body - including the head, chest, arm, foot, and

thigh, reviewed in [15]. Consistent placement of sensors allows for

more consistent signals across individuals. However, the need for

consistent placement usually requires clinical supervision. Also,

even though accelerometers are inexpensive, they are often part of

a dedicated device that needs to be bought and carried. The added

cost and inconvenience can make even simple monitors imprac-

tical for large-scale, long-term use.

Modern mobile phones have built-in accelerometers that can be

used to track movements without the need for an additional device

[16,17]. The collected data can be used for activity recognition

[18–20] as well as fall detection [21–23]. Mobile phones are

convenient to use as they have their own power sources, memory

storage capabilities, and can transmit data wirelessly. In a phone-

based scenario, individuals can simply download an app onto their

mobile phone enabling data collection and analysis. Mobile

phones allow automatic, convenient, real-time monitoring and

recording, which can be invaluable to large-scale studies and

personal health monitoring.

In this paper, our goal is to provide evidence that accelerometry

using mobile phones can be used to objectively quantify the

activity levels of individuals with lower-limb prostheses. We asked

participants with prostheses as well as able-bodied participants to

carry mobile phones for one week to record their daily activity

level. From this data we extracted the amount of movement of

participants during that time. Later we compare and correlate

these everyday movements to the K-level designation that was

assigned clinically.

Methods

Participants
Ten participants with transfemoral amputations (5F/5M, ages

53.1611.9) and 8 control participants (5F/3M, ages 27.263.4)

were recruited for this study. For the participants with transfem-

oral amputations, the average height was 16867 cm and weight

was 83619 kg, resulting in an average BMI of 3068. There were

7 K3 level participants and one participant in each of the three

other levels - K1, K2, and K4. More details on each participant

are available in Table 2. All participants were instructed to carry

mobile phones for one week to record their everyday activity.

During this time participants wore a belt that held a phone in the

center of the back. Written, informed consent was obtained for all

participants. The Northwestern University institutional review

board specifically approved this study.

Data Acquisition
The phones were T-mobile G1 phones running Android OS

version 1.6. The sampling rate was variable between 15 and

25 Hz, with the higher sampling rate occurring at times of

changing acceleration [17]. The phone was positioned such that

the accelerometer axes aligned with ‘x’ as vertical (up), ‘y’ as

medio-lateral (left), and ‘z’ as antero-posterior (behind) (fig. 1).

Data Processing
General activity levels for a given day were derived directly from

movement as measured by the accelerometer. Clips of these

accelerations were classified by the average rate of change of the

accelerations of the movement, used as an operational definition of

vigor. The percentage of time participants spent at each activity

level was used to compare across individuals.

The 3-axis phone accelerometer values were first linearly

interpolated to match 20 Hz. All analyses were then performed on

10 second clips. For each axis, the standard deviation of the

acceleration values for that clip was computed; the clip was

summarized by the mean of all three axes. Table 3 shows the

thresholds used in classifying the level of activity of the participant

at that time. These thresholds were chosen as they approximately

correspond to the labels given and boundaries are clear to

communicate. For the purposes of this study, these thresholds were

chosen arbitrarily, not for their strict adherence to intuitive

concepts of low/medium/high activity. Most importantly, the

thresholds are fixed, and the higher the number, the more active

the participant.

Two components of accelerations, the acceleration of the

subject as well as gravity, affect accelerometry signals. Therefore,

changes in acceleration can come from translational displacements

of the phone as well as changes in the orientation of the phone

relative to gravity. However, both of these require physical effort.

Table 1. Medicare functional classification levels (K-levels).

K-level Functional Description

K0 Does not have the ability or potential to ambulate or transfer safely with or without assistance

K1 Can use a prosthesis for transfers or ambulation on level surfaces at fixed cadence

K2 Can ambulate with the ability to traverse low-level environmental barriers such as curbs, stairs, or uneven surfaces

K3 Can walk with variable cadence

K4 Exceeds basic walking skills, exhibiting high impact and energy levels

doi:10.1371/journal.pone.0065340.t001
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Rotations and translations of the trunk are strenuous and both

affect our measure.

The analysis method also had to accommodate times during the

week-long data collection when the participants were not wearing

their devices. In order to remove the impact of recordings during

charging or when the belt was off, we first tried removing samples

taken when the phone was still and horizontal. If the orientation of

the gravitational vector was within 15 degrees perpendicular to the

screen, and the change in acceleration was below 0.1 m/s2

standard deviation, the clip was discarded from analysis. However,

we found this to be an imperfect approach to determine when

someone was not wearing the device; for example, this approach

could incorrectly classify long periods of lying down flat on the

front or back as ‘‘not worn’’, leading to further errors. Since we

were uncertain specifically when someone was not wearing the

device, we found it was better to measure the relative amount of

activity at different levels (e.g. percent of movement that was

highly activity) rather than estimate the total amount of time

(hours highly active). For this reason, in the results presented we

only used clips when the change in acceleration was above 0.1 m/

s2. Although we collected inactive data, the analysis reflects only

the times when the subjects are active.

Summaries of activity over participant weeks were performed by

totaling the amount of time spent in each level of activity over the

entire week. In order to give approximate confidence intervals, we

used bootstrapping to simulate variations in activity of participants

based on the limited data that was recorded. We first determined

the total time in each activity level for each day. Randomly and

with replacement we selected seven days to generate one bootstrap

simulated week, and totaled the time in each activity level for each

bootstrap sample. After 1000 random samples were selected, the

2.5% and 97.5% samples were selected as the bounds for the 95%

confidence interval. For all comparisons between groups, all

analyses were performed with one-tailed sign-rank tests unless

otherwise specified.

Results

Both able-bodied controls and individuals with transfemoral

amputations were instructed to carry the phones for one full week.

The phones were worn on belts (fig. 1) and continuously measured

accelerations. This setup allowed us to continuously monitor

participant movements during everyday life.

The week-long accelerometer recordings are distilled into a

general measure of activity for each participant (fig. 2). Different

activities led to distinct acceleration patterns. These patterns were

scored based on the measured movement of the device (see

methods). The amount of movement, as measured by changes in

acceleration on the phone, is indicative of the types of activities

participants are engaged in. We observe the general amount of

activity by observing the fraction of time spent at each of these

levels of activity.

Table 2. Descriptions of individuals with transfemoral amputations.

K-level
Age
(yrs) Sex

BMI
3068

Height
(cm)

Weight
(kg)

Prosthetic knee,
manufacturer Prosthesis functional capability Cause

Year since
amputation

1 64 F 26.6 160 68 3R60, Ottobock Variable cadence, swing control Trauma 44

2 62 F 38.4 163 102 3R22, Ottobock Single cadence Vascular 24

31 51 F 49.7 157 123 3R60, Ottobock Variable cadence, swing control Vascular 12

32 55 M 27.3 178 86 SNS Hydrolic, Mauch Variable cadence, stance flexion Trauma 43

33 58 M 20.7 173 62 3R60, Ottobock Variable cadence, swing control Trauma 5

34 49 M 32.7 173 98 Black Box, Mauch Variable cadence, stance flexion Trauma 14

35 50 F 30.2 163 80 C-leg, Ottobock Variable cadence, stance flexion,
natural walking, stumble recovery

Trauma 18

36 64 M 27.2 175 83 C-leg, Ottobock Variable cadence, stance flexion,
natural walking, stumble recovery

Trauma 33

37 57 M 25.5 173 76 3R60, Ottobock Variable cadence, swing control Trauma 6

4 21 F 21.3 160 54 C-leg, Ottobock Variable cadence, stance flexion,
natural walking, stumble recovery

Cancer 7

doi:10.1371/journal.pone.0065340.t002

Figure 1. Data acquisition setup. A) The G1 android mobile phone
used in this experiment. B) The axes of the tri-axial accelerometer
relative to the image in A–xyz as red, green, blue, respectively. C) The
phone was placed on the back of the subject so that the three axes
pointed up, left, and to the back of the subject, as indicated in D.
doi:10.1371/journal.pone.0065340.g001

Table 3. Activity level boundaries.

Activity Level Range (std dev of acc in m/s2)

Inactive 0–0.1

Low Activity 0.1–0.5

Medium Activity 0.5–1.0

High Activity 1.0+

doi:10.1371/journal.pone.0065340.t003
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To analyze the relationship between K-level and activity, we

observe the fraction of time spent at the combined medium and

high levels of activity for all participants (fig. 3). There was a

tendency that participants with amputations had lower levels of

activity than the 8 able-bodied participants (p = 0.08, one-tailed

rank sums). More specifically, the K1 and K2 subjects are less

active than any of the control subjects. Moreover, both K1 and K2

and two of the K3 subject showed less high-level activity than any

of the healthy controls. Despite high inter-individual variations,

even this small scale study showed trends that K levels co-vary

with high level activity.

Importantly, our analysis allows an understanding of the

precision of the activity levels. Using bootstrapping across days

we calculated how precise the estimates of activity levels are (Fig. 3,

errorbars in gray). We find that across days our technique yields

similar estimates of activity levels. The 95% confidence errors are

quite small (mean interval = 10.1% 62.1 std. err, median

interval = 6.7%). Much of the day-to-day variability was driven

by a small number of participants that only carried the phone for a

short period of time on certain days. This is evident in the

difference between the mean and median interval due to the high

Figure 2. Schematic of data analysis. A) Example data acquired from normal cell phone use, recorded for this illustration. B) 10 second segments
extracted from part A. The labels are only used for interpretation. C) The clips were then placed on a scale by their averaged standard deviations of
the accelerations for each axis and binned appropriately. Colors are associated with each bin of activity. Example activities are given for each bin
when the phone is worn on the belt. D) Proportions in those bins when including inactive data. E) Proportions when excluding inactive data–used to
exclude all times when the phone is not worn or the subject is not moving.
doi:10.1371/journal.pone.0065340.g002

Figure 3. The distribution of activity level for each subject. To aid interpretation, the participants have been ordered based on overall activity
level (medium+high). The IDs correspond to the subject K-levels, and subscripts are given to match the description of subjects in Table 2. The gray
transparency indicates the 95% confidence interval using bootstrapping over days recorded.
doi:10.1371/journal.pone.0065340.g003
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degree of skew. If worn consistently, this technique has good test-

retest reliability.

There is a wide variation in the activity of the participants with

amputations; some individuals show even more high-activity than

able-bodied controls. Here, we consider a few potential sources of

these variations. Among the seven K3 participants we observe a

weak relationship between the BMI of participants and their level

of activity (r =20.62, p = 0.07 one-tailed), indicating a potential

confound of participant weight. We also tested the effect of

different prosthetic legs–comparing the five legs with fewer

features (3R22, 3R60) to the five with more features (Mauch, C-

leg), but no statistically significant relationship was found (p = 0.11,

rank sums). Although analyses did not present definitive causes for

the variations among amputee activity, possible trends are

indicated that could be considered in later studies.

Discussion

In this study we analyzed the relationship between the activity

level of participants when using mobile phones and their

designated K-level. Given a larger sample size, an estimated

range of K-level should be possible from data conveniently

measured using a mobile phone. Unlike typical clinical tests, this

data represents how a person actually moves in their day-to-day

life, and is thus closer to how they would move outside the clinical

setting than traditional clinically-scored measures. Such an

evaluative tool for justifying a K-level designation can provide

support for clinical decisions that currently have little quantitative

support.

Currently there are metrics that can be used to estimate K-level.

There are a number of self-report questionnaires a physician can

use to gauge a patient’s current ability or desire to ambulate [24–

28], but as with all self-report questionnaires, they are subject to

bias, especially with regard to assessing the level of activity they

would like to reach. Perhaps a more accurate assessment is to

combine the ease of a survey format, but have the judgments and

scoring be performed by a clinician as is done with the Barthel

Index [29], the Functional Independence Measure [30], and the

Amputee Mobility Predictor [31]. However, to avoid the need for

clinical judgment during scoring, there are a number of physical

performance metrics which can be used to establish a patient’s

current ability–e.g. the six minute walk test [32], timed up and go

[33], and berg balance [34] to name a few. Importantly, these

questionnaires, surveys, and physical measures are measuring

patients as they are presented in the clinic, and using their self-

assessments to determine their future functional level. These also

do not provide a metric by which one could assign a patient to any

of the functional K-levels.

Although this study applies mobile phones to track movement of

subjects with prosthetic legs, a number of other approaches have

used direct kinetic measurements of this population to characterize

their capacity to move. This can include measuring the forces and

moments in prosthetic limbs [35–38], with the goal of determining

functional outcomes [39]. Direct force and kinetic measurements

on the prosthetic limb can be used to characterize specific

activities, such as walking [40,41] or incidents of falls [42,43].

Movement and force data can be collected from prostheses and

related to daily activities [44–47]. There is previous work that

estimated function levels directly from at-home monitoring. For

example, Orthocare Innovations uses an ankle-worn device, the

StepWatch [48,49], to record steps over the course of a week. By

observing the person’s stepping patterns using this device, and

performing an analysis using their proprietary Galileo clinical

outcomes assessment method, they produce an estimated K-level,

with a fractional precision to indicate a relative high or low

functional ability within a K-level category. We believe this

approach, using a dedicated device and analysis tools based on the

device output, is promising. However, the price of each StepWatch

device is currently over $500 and the proprietary analysis tools add

more to the cost, which when compared to the typical cost of a

mobile phone is substantially more. Moreover, full accelerometry

should be able to provide more detailed information about patient

activities during everyday life [50–52]. There are a number of

ways to directly measure movements and forces on the prosthesis,

or have participants wear dedicated devices elsewhere, and these

devices can also provide information used to estimate function

outcomes.

Our work uniquely demonstrates that it is possible to use mobile

phones to measure the amount of daily activity in individuals with

lower-limb amputations. We observe a relationship between the

amount of daily activity and functional level, which suggests that

future studies could potentially use this information for K-level

prediction. The current reliance on clinical measurements and

self-reported abilities may not reflect the actual at-home use of

prosthetic devices, which can lead to both over and under-

prescribing. Accurate prosthetic prescriptions are important to

further reign-in health care costs and avoid undue adjustments for

the expected growth of lower-limb amputations. By incorporating

objective, convenient, and inexpensively-acquired data on the

actual use of lower-limb prostheses, clinicians will have more

information at their disposal to make an accurate, cost-effective,

and functionally appropriate prescription for people with lower-

limb amputations.
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