76 research outputs found

    Integrin αvβ5 is a primary receptor for adenovirus in CAR-negative cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses bind to specific cellular receptors in order to infect their hosts. The specific receptors a virus uses are important factors in determining host range, cellular tropism, and pathogenesis. For adenovirus, the existing model of entry requires two receptor interactions. First, the viral fiber protein binds Coxsackie and Adenovirus Receptor (CAR), its primary cellular receptor, which docks the virus to the cell surface. Next, viral penton base engages cellular integrins, coreceptors thought to be required exclusively for internalization and not contributing to binding. However, a number of studies reporting data which conflicts with this simple model have been published. These observations have led us to question the proposed two-step model for adenovirus infection.</p> <p>Results</p> <p>In this study we report that cells which express little to no CAR can be efficiently transduced by adenovirus. Using competition experiments between whole virus and soluble viral fiber protein or integrin blocking peptides, we show virus binding is not dependent on fiber binding to cells but rather on penton base binding cellular integrins. Further, we find that binding to low CAR expressing cells is inhibited specifically by a blocking antibody to integrin αvβ5, demonstrating that in these cells integrin αvβ5 and not CAR is required for adenovirus attachment. The binding mediated by integrin αvβ5 is extremely high affinity, in the picomolar range.</p> <p>Conclusions</p> <p>Our data further challenges the model of adenovirus infection in which binding to primary receptor CAR is required in order for subsequent interactions between adenovirus and integrins to initiate viral entry. In low CAR cells, binding occurs through integrin αvβ5, a receptor previously thought to be used exclusively in internalization. We show for the first time that integrin αvβ5 can be used as an alternate binding receptor.</p

    Initiation of T cell signaling by CD45 segregation at 'close contacts'.

    Get PDF
    It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.The authors thank R.A. Cornall, M.L. Dustin and P.A. van der Merwe for comments on the manuscript and S. Ikemizu for useful discussions about the structure. We also thank W. Lu and T. Walter for technical support with protein expression and crystallization, the staff at Diamond Light Source beamlines I02, I03 and I04-1 (proposal mx10627) and European Synchrotron Radiation Facility beamlines ID23EH1 and ID23EH2 for assistance at the synchrotrons, G. Sutton for assistance with MALS experiments, and M. Fritzsche for advice on the calcium analysis. This work was funded by the Wellcome Trust (098274/Z/12/Z to S.J.D.; 090532/Z/09/Z to R.J.C.G.; 090708/Z/09/Z to D.K.), the UK Medical Research Council (G0700232 to A.R.A.), the Royal Society (UF120277 to S.F.L.) and Cancer Research UK (C20724/A14414 to C.S.; C375/A10976 to E.Y.J.). The Oxford Division of Structural Biology is part of the Wellcome Trust Centre for Human Genetics, Wellcome Trust Core Award Grant Number 090532/Z/09/Z. We acknowledge financial support from Instruct, an ESFRI Landmark Project. The OPIC electron microscopy facility was funded by a Wellcome Trust JIF award (060208/Z/00/Z).This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/ni.339

    Gravitational Wave Detection by Interferometry (Ground and Space)

    Get PDF
    Significant progress has been made in recent years on the development of gravitational wave detectors. Sources such as coalescing compact binary systems, neutron stars in low-mass X-ray binaries, stellar collapses and pulsars are all possible candidates for detection. The most promising design of gravitational wave detector uses test masses a long distance apart and freely suspended as pendulums on Earth or in drag-free craft in space. The main theme of this review is a discussion of the mechanical and optical principles used in the various long baseline systems in operation around the world - LIGO (USA), Virgo (Italy/France), TAMA300 and LCGT (Japan), and GEO600 (Germany/U.K.) - and in LISA, a proposed space-borne interferometer. A review of recent science runs from the current generation of ground-based detectors will be discussed, in addition to highlighting the astrophysical results gained thus far. Looking to the future, the major upgrades to LIGO (Advanced LIGO), Virgo (Advanced Virgo), LCGT and GEO600 (GEO-HF) will be completed over the coming years, which will create a network of detectors with significantly improved sensitivity required to detect gravitational waves. Beyond this, the concept and design of possible future "third generation" gravitational wave detectors, such as the Einstein Telescope (ET), will be discussed.Comment: Published in Living Reviews in Relativit

    Spin–orbit-driven ferromagnetic resonance

    No full text
    Ferromagnetic resonance is the most widely used technique for characterizing ferromagnetic materials. However, its use is generally restricted to wafer-scale samples or specific micro-magnetic devices, such as spin valves, which have a spatially varying magnetization profile and where ferromagnetic resonance can be induced by an alternating current owing to angular momentum transfer. Here we introduce a form of ferromagnetic resonance in which an electric current oscillating at microwave frequencies is used to create an effective magnetic field in the magnetic material being probed, which makes it possible to characterize individual nanoscale samples with uniform magnetization profiles. The technique takes advantage of the microscopic non-collinearity of individual electron spins arising from spin–orbit coupling and bulk or structural inversion asymmetry in the band structure of the sample. We characterize lithographically patterned (Ga,Mn)As and (Ga,Mn)(As,P) nanoscale bars, including broadband measurements of resonant damping as a function of frequency, and measurements of anisotropy as a function of bar width and strain. In addition, vector magnetometry on the driving fields reveals contributions with the symmetry of both the Dresselhaus and Rashba spin–orbit interactions

    Association of markers of endothelial activation and dysfunction with occurrence and outcome of pulmonary hemorrhage in dogs with leptospirosis

    No full text
    BACKGROUND: Endothelial dysfunction might contribute to the development of leptospiral pulmonary hemorrhage syndrome (LPHS). HYPOTHESIS: Serum concentrations of markers of endothelial activation and dysfunction are higher in dogs with leptospirosis and correlate with the occurrence of LPHS and a higher case fatality rate. ANIMALS: Clinically healthy dogs (n = 31; 10/31 dogs confirmed healthy based on no detected abnormalities on blood work), dogs with leptospirosis with LPHS (n = 17) and without LPHS (n = 15), dogs with acute kidney injury not due to leptospirosis (AKI‐nL, n = 34). METHODS: Observational study. Serum concentrations of soluble intercellular adhesion molecule 1 (sICAM‐1), vascular endothelial growth factor (VEGF), and angiopoietin‐2 (Ang‐2) at admission were compared between groups. Correlations with outcome and the accuracy to predict LPHS were examined. RESULTS: Soluble intercellular adhesion molecule (sICAM‐1), VEGF, and Ang‐2 concentrations were higher in dogs with AKI‐nL (sICAM‐1 34.7 ng/mL, interquartile range [IQR] = 24.4‐75.5; VEGF 43.1 pg/mL, IQR = 12.3‐79.2; Ang‐2 8.5 ng/mL, IQR = 6.2‐12.3), leptospirosis without LPHS (sICAM‐1 45.1 ng/mL, IQR = 30.6‐59.0; VEGF 32.4 pg/mL, IQR = 12.5‐62.6; Ang‐2 9.6 ng/mL, IQR = 6.9‐19.3), and LPHS (sICAM‐1 69.7 ng/mL, IQR = 42.1‐89.1; VEGF 51.8 pg/mL, IQR = 26.3‐96.7; Ang‐2 8.0 ng/mL, IQR = 5.6‐12.2) compared to controls (P < .001). In dogs with leptospirosis, VEGF and sICAM‐1 were higher in nonsurvivors (sICAM‐1 89.4 ng/mL, IQR = 76.5‐101.0; VEGF 117.0 pg/mL, IQR = 90.3‐232.4) than survivors (P = .004) and sICAM‐1 predicted the development of LPHS. CONCLUSIONS: Soluble intercellular adhesion molecule 1, VEGF, and Ang‐2 do not discriminate leptospirosis from AKI‐nL. In dogs with leptospirosis, sICAM‐1 and VEGF predict outcome and sICAM‐1 might identify dogs at risk for LPHS
    corecore