11 research outputs found

    Chemical control of guava rust (Puccinia psidii) in the Northern Region of Rio de Janeiro State, Brazil.

    Get PDF
    Fungicides were evaluated under field conditions for their efficacy in the control of guava rust (Puccinia psidii); five systemic fungicides (azoxystrobin, pyraclostrobin, cyproconazole, tebuconazole, triadimenol) and the protectant mancozeb. In a first trial, the fungicides were applied at two-week intervals intercalated with bi-weekly sprays of copper oxychloride. The initial incidence of rust on flower buds before treatment was 47%. Triadimenol and azoxystrobin were most effective in reducing the incidence of rust on fruit. The minimum rust incidence achieved with triadimenol was 12% compared to 84% in the control treatment (water). The initial level of rust on flower buds was particularly high for the tebuconazole treatment, which may have contributed to the ineffective control by this fungicide in the first trial. In the second trial, copper oxychloride sprays were applied when disease incidence on flower buds was low (7%). Azoxystrobin, tebuconazole, triadimenol and mancozeb treatments were started nine days after a second application of copper oxychloride. The fungicides were then applied at bi-weekly intervals and at the same concentrations as in the first trial. Triadimenol was again most effective in controlling rust, although its effect did not greatly differ from that of tebuconazole. The maximum disease incidence in all fungicide treatments was significantly lower than that observed in the control treatment

    Evidence of a noncoding transcript of the RIPK2 gene overexpressed in head and neck tumor

    Get PDF
    Receptor-interacting proteins are a family of serine/threonine kinases, which integrate extra and intracellular stress signals caused by different factors, including infections, inflammation and DNA damage. Receptor-interacting serine/threonine-protein kinase 2 (RIP-2) is a member of this family and an important component of the nuclear factor NF-kappa-B signaling pathway. The corresponding human gene RIPK2 generates two transcripts by alternative splicing, the full-length and a short transcript. The short transcript has a truncated 5’ sequence, which results in a predicted isoform with a partial kinase domain but able to transduce signals through its caspase recruitment domain. In this study, the expression of RIPK2 was investigated in human tissue samples and, in order to determine if both transcripts are similarly regulated at the transcriptional level, cancer cell lines were submitted to temperature and acid stresses. We observed that both transcripts are expressed in all tissues analyzed, with higher expression of the short one in tumor samples, and they are differentially regulated following temperature stress. Despite transcription, no corresponding protein for the short transcript was detected in tissues and cell lines analyzed. We propose that the shorter transcript is a noncoding RNA and that its presence in the cell may play regulatory roles and affect inflammation and other biological processes related to the kinase activity of RIP-2.Instituto de Biotecnologia y Biologia Molecula

    Immunobiology of congenital cytomegalovirus infection of the central nervous system—the murine cytomegalovirus model

    No full text
    Congenital human cytomegalovirus infection is a leading infectious cause of long-term neurodevelopmental sequelae, including mental retardation and hearing defects. Strict species specificity of cytomegaloviruses has restricted the scope of studies of cytomegalovirus infection in animal models. To investigate the pathogenesis of congenital human cytomegalovirus infection, we developed a mouse cytomegalovirus model that recapitulates the major characteristics of central nervous system infection in human infants, including the route of neuroinvasion and neuropathological findings. Following intraperitoneal inoculation of newborn animals with mouse cytomegalovirus, the virus disseminates to the central nervous system during high-level viremia and replicates in the brain parenchyma, resulting in a focal but widespread, non-necrotizing encephalitis. Central nervous system infection is coupled with the recruitment of resident and peripheral immune cells as well as the expression of a large number of pro-inflammatory cytokines. Although infiltration of cellular constituents of the innate immune response characterizes the early immune response in the central nervous system, resolution of productive infection requires virus-specific CD8(+) T cells. Perinatal mouse cytomegalovirus infection results in profoundly altered postnatal development of the mouse central nervous system and long-term motor and sensory disabilities. Based on an enhanced understanding of the pathogenesis of this infection, prospects for novel intervention strategies aimed to improve the outcome of congenital human cytomegalovirus infection are proposed
    corecore