367 research outputs found

    Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow

    Get PDF
    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, ττ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s[superscript −1]. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B[subscript 0]. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B[subscript 0]. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002–0.01 solid volume fraction) and nanoparticle radii (1–10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B[subscript 0] field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the transverse rotating magnetic field in the presence of B[subscript 0] are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization's magnitude is a strong function of the field frequency. In this frequency range, the fluid's transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1–3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.R. J. Shillman Career Development AwardThomas and Gerd Perkins Professorship AwardMIT Dean's FellowshipNational Institutes of Health (U.S.) (Award R01 EB007942

    Limits on Cosmological Variation of Strong Interaction and Quark Masses from Big Bang Nucleosynthesis, Cosmic, Laboratory and Oklo Data

    Get PDF
    Recent data on cosmological variation of the electromagnetic fine structure constant from distant quasar (QSO) absorption spectra have inspired a more general discussion of possible variation of other constants. We discuss variation of strong scale and quark masses. We derive the limits on their relative change from (i) primordial Big-Bang Nucleosynthesis (BBN); (ii) Oklo natural nuclear reactor, (iii) quasar absorption spectra, and (iv) laboratory measurements of hyperfine intervals.Comment: 10 pages 2 figurs: second version have several references added and some new comment

    Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field

    Get PDF
    2011 March 1In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 degree Centigrade above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (approximately 1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002–0.01 solid volume fraction) and nanoparticle radii (1–10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful selection of the rotating or sinusoidal field parameters (field frequency and amplitude). The work indicates that it may be feasible to combine low-field MRI with a magnetic hyperthermia system using superparamagnetic iron oxide nanoparticles.National Institutes of Health (U.S.

    Neural correlates of source memory are revealed by a high density ERPs array

    Get PDF
    Failures of source memory, which is the ability to recall the specific context in which events took place, have been associated with cognitive decline in the elderly. Source memory deficits appear to be more indicative of age-related memory impairment than disruption of item memory

    Constraining fundamental constants of physics with quasar absorption line systems

    Full text link
    We summarize the attempts by our group and others to derive constraints on variations of fundamental constants over cosmic time using quasar absorption lines. Most upper limits reside in the range 0.5-1.5x10-5 at the 3sigma level over a redshift range of approximately 0.5-2.5 for the fine-structure constant, alpha, the proton-to-electron mass ratio, mu, and a combination of the proton gyromagnetic factor and the two previous constants, gp(alpha^2/mu)^nu, for only one claimed variation of alpha. It is therefore very important to perform new measurements to improve the sensitivity of the numerous methods to at least <0.1x10-5 which should be possible in the next few years. Future instrumentations on ELTs in the optical and/or ALMA, EVLA and SKA pathfinders in the radio will undoutedly boost this field by allowing to reach much better signal-to-noise ratios at higher spectral resolution and to perform measurements on molecules in the ISM of high redshift galaxies.Comment: 11 pages, 3 figure

    Dense, viscous brine behavior in heterogeneous porous medium systems

    Get PDF
    The behavior of dense, viscous calcium bromide brine solutions used to remediate systems contaminated with dense nonaqueous phase liquids (DNAPLs) is considered in laboratory and field porous medium systems. The density and viscosity of brine solutions are experimentally investigated and functional forms fit over a wide range of mass fractions. A density of 1.7 times, and a corresponding viscosity of 6.3 times, that of water is obtained at a calcium bromide mass fraction of 0.53. A three-dimensional laboratory cell is used to investigate the establishment, persistence, and rate of removal of a stratified dense brine layer in a controlled system. Results from a field-scale experiment performed at the Dover National Test Site are used to investigate the ability to establish and maintain a dense brine layer as a component of a DNAPL recovery strategy, and to recover the brine at sufficiently high mass fractions to support the economical reuse of the brine. The results of both laboratory and field experiments show that a dense brine layer can be established, maintained, and recovered to a significant extent. Regions of unstable density profiles are shown to develop and persist in the field-scale experiment, which we attribute to regions of low hydraulic conductivity. The saturated-unsaturated, variable-density ground-water flow simulation code SUTRA is modified to describe the system of interest, and used to compare simulations to experimental observations and to investigate certain unobserved aspects of these complex systems. The model results show that the standard model formulation is not appropriate for capturing the behavior of sharp density gradients observed during the dense brine experiments

    Fertility, Living Arrangements, Care and Mobility

    Get PDF
    There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed

    Driven to excess? Linking calling, character and the (mis)behaviour of marketers

    Get PDF
    We are presently at a point of unique circumstantial convergence where recession, an increased emphasis on business ethics, and marketer’s reluctance to accept shifting social agendas have combined to identify the need for a new approach to marketing. Using concepts from the human resources, marketing and psychology literatures, and especially Erich Fromm’s ideas concerning economic character, this paper posits that marketers – as a professional community – are driven to promote consumerist outcomes; victims of an automaton amalgam of calling and character. The analysis suggests the vulnerability of both marketer and consumer are mutually reinforcing and that we need, somehow, to break this damaging cycle of dependence. We know little, however, about how marketers think and feel about their discipline, so this paper also promotes an agenda for marketer behaviour research, as a countervailing balance to a currently disproportionate focus on the consumer
    corecore