738 research outputs found

    Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz

    Get PDF
    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and RF photoinjector powered by a single ultrastable RF transmitter at x-band RF frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The entire accelerator is approximately 1 meter long and produces hard x-rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5×10115 \times 10^{11} photons/second in a 5% bandwidth and the brilliance is 2×1012photons/(sec mm2 mrad2 0.1%)2 \times 10^{12}\mathrm{photons/(sec\ mm^2\ mrad^2\ 0.1\%)} in pulses with RMS pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.Comment: 25 pages, 24 figures, 54 reference

    Conceptual design of the Gas Injection and Vacuum System for DTT NBI

    Full text link
    The Divertor Tokamak Test (DTT) is a new experimental facility whose construction is starting in Frascati, Rome, Italy; its main goals are improving the understanding of plasma-wall interactions and supporting the development of ITER and DEMO. DTT will be equipped with a Neutral Beam Injector (NBI) based on negative deuterium ions, designed to inject 10 MW of power to the tokamak. A fundamental system for the good operations of the DTT NBI will be its Gas injection and Vacuum System (GVS). Indeed, the efficiency of the entire NBI strongly depends on the good performance of its GVS. The GVS for DTT NBI will be composed of two systems working in parallel: a grounded section connected to the main vacuum vessel, and a high voltage part connected to the ion source vessel and working at -510 kV voltage. The grounded part will feature a fore vacuum system (given by screw and roots pumps) plus a high vacuum system based on turbo-molecular pumps located on the side walls of the vessel and Non-Evaporable Getter (NEG) pumps located inside the vessel on the upper and lower surfaces. On the other hand, the high voltage part will feature a fore vacuum system (given by two compact screw pumps mounted on the external surface for the ion source vessel) plus a high vacuum system based on turbo-molecular pumps also located on the sidewalls of the ion source vessel. A dedicated deuterium gas injection will feed the process gas to the ion source and the neutralizer. This paper gives a description of the conceptual design of the GVS for DTT NBI, and of the procedure followed to optimize this system considering the operational requirements and the other constraints of the DTT NBI.Comment: 12 pages, 8 figures, presented at the SOFT 2022 conferenc

    A new generation of real-time systems in the JET tokamak

    Get PDF
    Recently a new recipe for developing and deploying real-time systems has become increasingly adopted in the JET tokamak. Powered by the advent of x86 multi-core technology and the reliability of the JET’s well established Real-Time Data Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide realtime performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests’ (IRQs) affinities together with the kernel’s CPU isolation mechanism allows to obtain either soft or hard real-time behavior depending on the synchronization mechanism adopted. Finally, the Multithreaded Application Real-Time executor (MARTe) framework is used for building applications particularly optimised for exploring multicore architectures. In the past year, four new systems based on this philosophy have been installed and are now part of the JET’s routine operation. The focus of the present work is on the configuration and interconnection of the ingredients that enable these new systems’ real-time capability and on the impact that JET’s distributed real-time architecture has on system engineering requirements, such as algorithm testing and plant commissioning. Details are given about the common real-time configuration and development path of these systems, followed by a brief description of each system together with results regarding their real-time performance. A cycle time jitter analysis of a user-space MARTe based application synchronising over a network is also presented. The goal is to compare its deterministic performance while running on a vanilla and on a Messaging Real time Grid (MRG) Linux kernel

    Effect of Village-wide Use of Long-Lasting Insecticidal Nets on Visceral Leishmaniasis Vectors in India and Nepal: A Cluster Randomized Trial

    Get PDF
    Visceral leishmaniasis (VL) is a vector-borne disease causing at least 60,000 deaths each year amongst an estimated half million cases, and until recently there have been no significant initiatives to reduce this burden. However, in 2005, the governments of India, Bangladesh and Nepal signed a memorandum of understanding at the World Health Assembly in Geneva for the elimination of the disease by 2015. In the absence of an effective vaccine, the program will rely on the active detection and prompt treatment of cases throughout the endemic region, combined with a recurrent indoor residual spraying (IRS) of all villages at risk. Vector control programs based on IRS are notorious for failing to maintain comprehensive spray coverage over time owing to logistical problems and lack of compliance by householders. Long-lasting insecticidal nets (LNs) have been postulated as an alternative or complement to IRS. Here we describe how comprehensive coverage of LN in trial communities reduced the indoor density of sand flies by 25% compared to communities without LNs. This provides an indication that LNs could be usefully deployed as a component of the VL control program in the Indian subcontinent

    Chemical and environmental vector control as a contribution to the elimination of visceral leishmaniasis on the Indian subcontinent: cluster randomized controlled trials in Bangladesh, India and Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bangladesh, India and Nepal are working towards the elimination of visceral leishmaniasis (VL) by 2015. In 2005 the World Health Organization/Training in Tropical Diseases launched an implementation research programme to support integrated vector management for the elimination of VL from Bangladesh, India and Nepal. The programme is conducted in different phases, from proof-of-concept to scaling up intervention. This study was designed in order to evaluate the efficacy of the three different interventions for VL vector management: indoor residual spraying (IRS); long-lasting insecticide treated nets (LLIN); and environmental modification (EVM) through plastering of walls with lime or mud.</p> <p>Methods</p> <p>Using a cluster randomized controlled trial we compared three vector control interventions with a control arm in 96 clusters (hamlets or neighbourhoods) in each of the 4 study sites: Bangladesh (one), India (one) and Nepal (two). In each site four villages with high reported VL incidences were included. In each village six clusters and in each cluster five households were randomly selected for sand fly collection on two consecutive nights. Control and intervention clusters were matched with average pre-intervention vector densities.</p> <p>In each site six clusters were randomly assigned to each of the following interventions: indoor residual spraying (IRS); long-lasting insecticide treated nets (LLIN); environmental management (EVM) or control. All the houses (50-100) in each intervention cluster underwent the intervention measures. A reduction of intra-domestic sand fly densities measured in the study households by overnight US Centres for Disease Prevention and Control light trap captures (that is the number of sand flies per trap per night) was the main outcome measure.</p> <p>Results</p> <p>IRS, and to a lesser extent EVM and LLINs, significantly reduced sand fly densities for at least 5 months in the study households irrespective of type of walls or whether or not people shared their house with cattle. IRS was effective in all sites but LLINs were only effective in Bangladesh and India. Mud plastering did not reduce sand fly density (Bangladesh study); lime plastering in India and one Nepali site, resulted in a significant reduction of sand fly density but not in the second Nepali site.</p> <p>Conclusion</p> <p>Sand fly control can contribute to the regional VL elimination programme; IRS should be strengthened in India and Nepal but in Bangladesh, where vector control has largely been abandoned during the last decades, the insecticide treatment of existing bed nets (coverage above 90% in VL endemic districts) could bring about an immediate reduction of vector populations; operational research to inform policy makers about the efficacious options for VL vector control and programme performance should be strengthened in the three countries.</p
    • …
    corecore