257 research outputs found

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio

    Computing the Fréchet Distance with a Retractable Leash

    Get PDF
    All known algorithms for the Fréchet distance between curves proceed in two steps: first, they construct an efficient oracle for the decision version; second, they use this oracle to find the optimum from a finite set of critical values. We present a novel approach that avoids the detour through the decision version. This gives the first quadratic time algorithm for the Fréchet distance between polygonal curves in (Formula presented.) under polyhedral distance functions (e.g., (Formula presented.) and (Formula presented.)). We also get a (Formula presented.)-approximation of the Fréchet distance under the Euclidean metric, in quadratic time for any fixed (Formula presented.). For the exact Euclidean case, our framework currently yields an algorithm with running time (Formula presented.). However, we conjecture that it may eventually lead to a faster exact algorithm

    Economical, green, and safe route towards substituted lactones by anodic generation of oxycarbonyl radicals

    Get PDF
    A new electrochemical methodology has been developed for the generation of oxycarbonyl radicals under mild and green conditions from readily available hemioxalate salts. Mono‐ and multi‐functionalised γ‐butyrolactones were synthesised through exo‐cyclisation of these oxycarbonyl radicals with an alkene, followed by the sp3–sp3 capture of the newly formed carbon‐centred radical. The synthesis of functionalised valerolactone derivatives was also achieved, demonstrating the versatility of the newly developed methodology. This represents a viable synthetic route towards pharmaceutically important fragments and further demonstrates the practicality of electrosynthesis as a green and economical method to activate small organic molecules

    Mechanistic Insights into Ring-Opening and Decarboxylation of 2-Pyrones in Liquid Water and Tetrahydrofuran

    Full text link
    2-Pyrones, such as triacetic acid lactone, are a promising class of biorenewable platform chemicals that provide access to an array of chemical products and intermediates. We illustrate through the combination of results from experimental studies and first-principle density functional theory calculations that key structural features dictate the mechanisms underlying ring-opening and decarboxylation of 2-pyrones, including the degree of ring saturation, the presence of C═C bonds at the C4═C5 or C5═C6 positions within the ring, as well as the presence of a β-keto group at the C4 position. Our results demonstrate that 2-pyrones undergo a range of reactions unique to their structure, such as retro-Diels–Alder reactions and nucleophilic addition of water. In addition, the reactivity of 2-pyrones and the final products formed is shown to depend on the solvent used and the acidity of the reaction environment. The mechanistic insights obtained here provide guidance for the selective conversion of 2-pyrones to targeted chemicals.Reprinted (adapted) with permission from Journal of American Chemical Society, 135(15); 5699-5708. Doi: 10.1021/ja312075r. Copyright 2013 American Chemical Society. </p

    Über ein primäres Melanosarkom der Vagina

    No full text
    corecore