4,160 research outputs found

    Scaling of the turbulence transition threshold in a pipe

    Full text link
    We report the results of an experimental investigation of the transition to turbulence in a pipe over approximately an order of magnitude range in ReRe. A novel scaling law is uncovered using a systematic experimental procedure which permits contact to be made with modern theoretical thinking. The principal result we uncover is a scaling law which indicates that the amplitude of perturbation required to cause transition scales as O(Re−1)O(Re^{-1}).Comment: 4 pages, RevTex (submitted to Phys. Rev. Lett.

    The occurrence of cadmium in seawater and in marine organisms and sediments

    Get PDF
    Methods have been developed for determining cadmium in seawater, marine organisms, and marine sediments. The procedure, based on the dithizone extraction method of Saltzman, is capable of detecting less than 10 mµg of the element and can be used for determining cadmium in silicate rocks; only thallium interferes. To confirm the presence of cadmium and to ensure freedom from contamination, the dithizone extracts were examined spectrographically

    Shear-flow transition: the basin boundary

    Full text link
    The structure of the basin of attraction of a stable equilibrium point is investigated for a dynamical system (W97) often used to model transition to turbulence in shear flows. The basin boundary contains not only an equilibrium point Xlb but also a periodic orbit P, and it is the latter that mediates the transition. Orbits starting near Xlb relaminarize. We offer evidence that this is due to the extreme narrowness of the region complementary to basin of attraction in that part of phase space near Xlb. This leads to a proposal for interpreting the 'edge of chaos' in terms of more familiar invariant sets.Comment: 11 pages; submitted for publication in Nonlinearit

    Exclusion Statistics in a two-dimensional trapped Bose gas

    Full text link
    We briefly explain the notion of exclusion statistics and in particular discuss the concept of an ideal exclusion statistics gas. We then review a recent work where it is demonstrated that a {\em two-dimensional} Bose gas with repulsive delta function interactions obeys ideal exclusion statistics, with a fractional parameter related to the interaction strength.Comment: 10 pages, RevTeX. Proceedings of the Salerno workshop "Theory of Quantum Gases and Quantum Coherence", to appear in a special issue of J.Phys. B, Dec. 200

    Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    Get PDF
    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores

    Complementation of Cochliobolus heterostrophus trp- mutants produced by gene replacement

    Get PDF
    Transformation systems for most filamentous fungi are based on selection for drug resistance. This strategy is advantageous becasue wild-type strains, including isolates collected directly from the field, can be used as recipients in transformation experiements

    Ultrasound mediated nanoparticle drug delivery

    Get PDF
    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems. Ultrasound parameters are optimized to achieve maximum cell internalization of molecules and increased nanoparticle delivery to a cell layer on a coverslip. In-vivo studies demonstrate the possibility of using a lower dose of paclitaxel to slow tumor growth rates, increase doxorubicin concentration in tumor tissue, and enhance tumor delivery of fluorescent molecules through treatments that combine nanoparticles with ultrasound and microbubbles.Doctor of Philosoph
    • …
    corecore