33,837 research outputs found
Design Optimization for an Electro-Thermally Actuated Polymeric Microgripper
Thermal micro-actuators are a promising solution to the need for
large-displacement, gentle handling force, low-power MEMS actuators. Potential
applications of these devices are micro-relays, assembling and miniature
medical instrumentation. In this paper the development of thermal
microactuators based on SU-8 polymer is described. The paper presents the
development of a new microgripper which can realize a movement of the gripping
arms with possibility for positioning and manipulating of the gripped object.
Two models of polymeric microgripper electrothermo- mechanical actuated, using
low actuation voltages, designed for SU-8 polymer fabrication were presented.
The electro-thermal microgrippers were designed and optimized using finite
element simulations. Electro-thermo-mechanical simulations based on finite
element method were performed for each of the model in order to compare the
results. Preliminary experimental tests were carried out.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Neutron Star Kicks from Asymmetric Collapse
Many neutron stars are observed to be moving with spatial velocities, in
excess of 500km/s. A number of mechanisms have been proposed to give neutron
stars these high velocities. One of the leading classes of models proposed
invokes asymmetries in the core of a massive star just prior to collapse. These
asymmetries grow during the collapse, causing the resultant supernova to also
be asymmetric. As the ejecta is launched, it pushes off (or ``kicks'') the
newly formed neutron star. This paper presents the first 3-dimensional
supernova simulations of this process. The ejecta is not the only matter that
kicks the newly-formed neutron star. Neutrinos also carry away momentum and the
asymmetric collapse leads also to asymmetries in the neutrinos. However, the
neutrino asymmetries tend to damp out the neutron star motions and even the
most extreme asymmetric collapses presented here do not produce final neutron
star velocities above 200km/s.Comment: 7 pages, 4 figures, see http://qso.lanl.gov/~clf/papers/kick.ps.gz
for full figure
Recommended from our members
Stratigraphical evidence of Elysium sea ice from HiRise images
Abstract not available
The Zeeman effect in the G band
We investigate the possibility of measuring magnetic field strength in G-band
bright points through the analysis of Zeeman polarization in molecular CH
lines. To this end we solve the equations of polarized radiative transfer in
the G band through a standard plane-parallel model of the solar atmosphere with
an imposed magnetic field, and through a more realistic snapshot from a
simulation of solar magneto-convection. This region of the spectrum is crowded
with many atomic and molecular lines. Nevertheless, we find several instances
of isolated groups of CH lines that are predicted to produce a measurable
Stokes V signal in the presence of magnetic fields. In part this is possible
because the effective Land\'{e} factors of lines in the stronger main branch of
the CH A--X transition tend to zero rather quickly for
increasing total angular momentum , resulting in a Stokes spectrum of
the G band that is less crowded than the corresponding Stokes spectrum. We
indicate that, by contrast, the effective Land\'{e} factors of the and
satellite sub-branches of this transition tend to for increasing .
However, these lines are in general considerably weaker, and do not contribute
significantly to the polarization signal. In one wavelength location near 430.4
nm the overlap of several magnetically sensitive and non-sensitive CH lines is
predicted to result in a single-lobed Stokes profile, raising the
possibility of high spatial-resolution narrow-band polarimetric imaging. In the
magneto-convection snapshot we find circular polarization signals of the order
of 1% prompting us to conclude that measuring magnetic field strength in
small-scale elements through the Zeeman effect in CH lines is a realistic
prospect.Comment: 22 pages, 6 figures. To be published in the Astrophysical Journa
A 'p-n' diode with hole and electron-doped lanthanum manganite
The hole-doped manganite La0.7Ca0.3MnO3 and the electron-doped manganite
La0.7Ce0.3MnO3 undergo an insulator to metal transition at around 250 K, above
which both behave as a polaronic semiconductor. We have successfully fabricated
an epitaxial trilayer (La0.7Ca0.3MnO3/SrTiO3/La0.7Ce0.3MnO3), where SrTiO3 is
an insulator. At room temperature, i.e. in the semiconducting regime, it
exhibits asymmetric current-voltage (I-V) characteristics akin to a p-n diode.
The observed asymmetry in the I-V characteristics disappears at low
temperatures where both the manganite layers are metallic. To the best of our
knowledge, this is the first report of such a p-n diode, using the polaronic
semiconducting regime of doped manganites.Comment: PostScript text and 2 figures, to be published in Appl. Phys. Lett
RF free ultrasonic positioning
All wearable centric location sensing technologies must address the issue of clock synchronisation between signal transmitting systems and signal receiving systems. GPS receivers, for example, compensate for synchronisation errors by incorporating a model of the receiver clock offset in the navigation solution. Drift between satellite clocks is also monitored to keep signal data in synch with GPS time. Most ultrasonic positioning systems solve the synchronisation problem by using a second medium for communication between transmitter and receiver devices. The transmitters in these systems emit RF signals (pings) to indicate the transmission of subsequent ultrasound signals (chirps). By subtracting the arrival time of the ping from that of the chirps, the receiver is able to compute the distance to each transmitter. In this paper, we describe an ultrasonic positioning system that does not use RF signals to achieve synchronisation. Instead, it exploits a periodic chirp transmission pattern to model the receiver’s position using chirp reception times exclusively. Not only does the system improve on the accuracy of previous technologies but it also eliminates bulky RF circuitry – a definite advantage for wearable applications where component size and weight are critical for usability.
Joint measurement of complementary observables in moment tomography
Wigner and Husimi quasi-distributions, owing to their functional regularity,
give the two archetypal and equivalent representations of all
observable-parameters in continuous-variable quantum information. Balanced
homodyning and heterodyning that correspond to their associated sampling
procedures, on the other hand, fare very differently concerning their state or
parameter reconstruction accuracies. We present a general theory of a now-known
fact that heterodyning can be tomographically more powerful than balanced
homodyning to many interesting classes of single-mode quantum states, and
discuss the treatment for two-mode sources.Comment: 15 pages, 4 figures, conference proceedings for Quantum 2017 in
Torin
Gravitational Waves from Axisymmetric, Rotational Stellar Core Collapse
We have carried out an extensive set of two-dimensional, axisymmetric,
purely-hydrodynamic calculations of rotational stellar core collapse with a
realistic, finite-temperature nuclear equation of state and realistic massive
star progenitor models. For each of the total number of 72 different
simulations we performed, the gravitational wave signature was extracted via
the quadrupole formula in the slow-motion, weak-field approximation. We
investigate the consequences of variation in the initial ratio of rotational
kinetic energy to gravitational potential energy and in the initial degree of
differential rotation. Furthermore, we include in our model suite progenitors
from recent evolutionary calculations that take into account the effects of
rotation and magnetic torques. For each model, we calculate gravitational
radiation wave forms, characteristic wave strain spectra, energy spectra, final
rotational profiles, and total radiated energy. In addition, we compare our
model signals with the anticipated sensitivities of the 1st- and 2nd-generation
LIGO detectors coming on line. We find that most of our models are detectable
by LIGO from anywhere in the Milky Way.Comment: 13 pages, 22 figures, accepted for publication in ApJ (v600, Jan.
2004). Revised version: Corrected typos and minor mistakes in text and
references. Minor additions to the text according to the referee's
suggestions, conclusions unchange
WHAM Observations of H-alpha Emission from High Velocity Clouds in the M, A, and C Complexes
The first observations of the recently completed Wisconsin H-Alpha Mapper
(WHAM) facility include a study of emission lines from high velocity clouds in
the M, A, and C complexes, with most of the observations on the M I cloud. We
present results including clear detections of H-alpha emission from all three
complexes with intensities ranging from 0.06 R to 0.20 R. In every observed
direction where there is significant high velocity H I gas seen in the 21 cm
line we have found associated ionized hydrogen emitting the H-alpha line. The
velocities of the H-alpha and 21 cm emission are well correlated in every case
except one, but the intensities are not correlated. There is some evidence that
the ionized gas producing the H-alpha emission envelopes the 21 cm emitting
neutral gas but the H-alpha "halo", if present, is not large. If the H-alpha
emission arises from the photoionization of the H I clouds, then the implied
Lyman continuum flux F_{LC} at the location of the clouds ranges from 1.3 to
4.2 x 10^5 photons cm^{-2} s^{-1}. If, on the other hand, the ionization is due
to a shock arising from the collision of the high-velocity gas with an ambient
medium in the halo, then the density of the pre-shocked gas can be constrained.
We have also detected the [S II] 6716 angstrom line from the M I cloud and have
evidence that the [S II] to H-alpha ratio varies with location on the cloud.Comment: 32 pages, 18 figures, to appear in ApJ (Sept. 10, 1998
Existence of an information unit as a postulate of quantum theory
Does information play a significant role in the foundations of physics?
Information is the abstraction that allows us to refer to the states of systems
when we choose to ignore the systems themselves. This is only possible in very
particular frameworks, like in classical or quantum theory, or more generally,
whenever there exists an information unit such that the state of any system can
be reversibly encoded in a sufficient number of such units. In this work we
show how the abstract formalism of quantum theory can be deduced solely from
the existence of an information unit with suitable properties, together with
two further natural assumptions: the continuity and reversibility of dynamics,
and the possibility of characterizing the state of a composite system by local
measurements. This constitutes a new set of postulates for quantum theory with
a simple and direct physical meaning, like the ones of special relativity or
thermodynamics, and it articulates a strong connection between physics and
information.Comment: Published version - 6 pages, 3 appendices, 3 figure
- …