279 research outputs found

    An Application of the Multicanonical Monte Carlo Method to the Bulk Water System

    Get PDF
    Abstract Motivation. Powerful Monte Carlo algorithm may solve the multiple-minima problem for the bulk water system. Method. The multicanonical algorithm is based on a non-Boltzman weight factor and produces flat probability distribution of potential energy artificially. The method allows the system to rove through the complex potential energy surface without getting trapped in a local minimum state, and has been proven to be efficient for studying first-order phase transitions of complex systems such as spin glasses and proteins. One of the features of the method is that the expectation values of thermodynamic properties can be calculated as a function of temperature by applying the histogram-reweighting techniques to the results of one long production run. Results. In the present study, we determined the multicanonical weight factor that can produce flat probability distribution of potential energy corresponding to the temperature range from 170 to 630 K. From the peak of the heat capacity, we found a phase transition at 190 K. The lower energy structures and oxygen-oxygen radial distribution functions imply that the structure at lower temperatures is irregular. However, the average number of hydrogen bonds per water molecule is nearly equal to four at low temperatures, which suggests the formation of amorphous ice. Conclusions. We conclude that the phase transition we found in the present study is the one between liquid water and amorphous ice. In order to study first-order phase transition between water and crystalline ice with the multicanonical algorithm, we have to obtain more precise multicanonical weight factor in the low energy region

    Comparative Study on Angiotensin Converting Enzyme Inhibitory Activity of Hydrolysate of Meat Protein of Indonesian Local Livestocks

    Get PDF
    The experiment was conducted to investigate the angiotensin converting enzyme (ACE) inhibitoryactivity of hydrolysate in meat protein of Bali cattle, Kacang goat, native chicken, and local duck. Themeats of Bali cattle, Kacang goat, native chicken, and local duck were used in this study. The meatswere ground using food processor added with aquadest to obtain meat extract. The meat extracts werethen hydrolyzed using protease enzymes to obtain hydrolysate of meat protein. Protein concentration ofmeat extract and hydrolysate of meat protein were determined, and were confirmed by sodium dodecylsulfate - poly acrylamide gel electrophoresis (SDS-PAGE). ACE inhibitory activity of hydrolysate ofmeat protein derived from Bali cattle, Kacang goat, native chicken, and local duck was also determined.The results showed that protein concentration of hydrolysate of meat protein of Bali cattle, Kacang goat,native chicken, and local duck meat was significantly higher than their meat extracts. SDS-PAGEanalysis indicated that hydrolysate of meat protein of Bali cattle, Kacang goat, native chicken, and localduck had more peptides with lower molecular weight, compared to their meat extracts. Hydrolysate ofmeat protein of Bali cattle, Kacang goat, native chicken, and local duck had potencies in inhibiting ACEactivity, so it will potentially reduce blood pressure

    Phosphorylated Smad2 in Advanced Stage Gastric Carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transforming growth factor β (TGFβ) receptor signaling is closely associated with the invasion ability of gastric cancer cells. Although Smad signal is a critical integrator of TGFβ receptor signaling transduction systems, not much is known about the role of Smad2 expression in gastric carcinoma. The aim of the current study is to clarify the role of phosphorylated Smad2 (p-Smad2) in gastric adenocarcinomas at advanced stages.</p> <p>Methods</p> <p>Immunohistochemical staining with anti-p-Smad2 was performed on paraffin-embedded specimens from 135 patients with advanced gastric adenocarcinomas. We also evaluated the relationship between the expression levels of p-Smad2 and clinicopathologic characteristics of patients with gastric adenocarcinomas.</p> <p>Results</p> <p>The p-Smad2 expression level was high in 63 (47%) of 135 gastric carcinomas. The p-Smad2 expression level was significantly higher in diffuse type carcinoma (p = 0.007), tumours with peritoneal metastasis (p = 0.017), and tumours with lymph node metastasis (p = 0.047). The prognosis for p-Smad2-high patients was significantly (p = 0.035, log-rank) poorer than that of p-Smad2-low patients, while a multivariate analysis revealed that p-Smad2 expression was not an independence prognostic factor.</p> <p>Conclusion</p> <p>The expression of p-Smad2 is associated with malignant phenotype and poor prognosis in patients with advanced gastric carcinoma.</p

    Increased TIMP-3 expression alters the cellular secretome through dual inhibition of the metalloprotease ADAM10 and ligand-binding of the LRP-1 receptor

    Get PDF
    The tissue inhibitor of metalloproteinases-3 (TIMP-3) is a major regulator of extracellular matrix turnover and protein shedding by inhibiting different classes of metalloproteinases, including disintegrin metalloproteinases (ADAMs). Tissue bioavailability of TIMP-3 is regulated by the endocytic receptor low-density-lipoprotein receptor-related protein-1 (LRP-1). TIMP-3 plays protective roles in disease. Thus, different approaches have been developed aiming to increase TIMP-3 bioavailability, yet overall effects of increased TIMP-3 in vivo have not been investigated. Herein, by using unbiased mass-spectrometry we demonstrate that TIMP-3-overexpression in HEK293 cells has a dual effect on shedding of transmembrane proteins and turnover of soluble proteins. Several membrane proteins showing reduced shedding are known as ADAM10 substrates, suggesting that exogenous TIMP-3 preferentially inhibits ADAM10 in HEK293 cells. Additionally identified shed membrane proteins may be novel ADAM10 substrate candidates. TIMP-3-overexpression also increased extracellular levels of several soluble proteins, including TIMP-1, MIF and SPARC. Levels of these proteins similarly increased upon LRP-1 inactivation, suggesting that TIMP-3 increases soluble protein levels by competing for their binding to LRP-1 and their subsequent internalization. In conclusion, our study reveals that increased levels of TIMP-3 induce substantial modifications in the cellular secretome and that TIMP-3-based therapies may potentially provoke undesired, dysregulated functions of ADAM10 and LRP-1

    Erectile dysfunction and heart failure: the role of phosphodiesterase type 5 inhibitors

    Get PDF
    The phosphodiesterase type 5 (PDE-5) inhibitors are effective in treating erectile dysfunction (ED). ED and heart failure (HF) share similar risk factors, and commonly present together. This association has led to questions ranging from the safety and efficacy of PDE-5 inhibitors in HF patients to a possible role for this class of medication to treat HF patients with or without ED. In addition to endothelial dysfunction, there are causes of ED specific to patients with HF including low exercise tolerance, depression and HF medications. Before treating HF patients with PDE-5 inhibitors, patients should be assessed for their risk of a cardiac event during sexual activity. PDE-5 inhibitors are safe and effective in treating ED in HF patients. An improvement in erectile function by PDE-5 inhibitors was associated with an improvement in quality of life and reduction in depression. Several studies demonstrated the effect of PDE-5 inhibitors on HF per se. PDE-5 inhibitors improved endothelial dysfunction, increased exercise tolerance, decreased pulmonary vascular resistance and pulmonary artery pressure, and increased cardiac index. Several mechanisms whereby PDE-5 inhibitors improve HF have been proposed. PDE-5 inhibitors already have a role in treating primary pulmonary hypertension; however additional studies are needed to determine if they will become a standard therapy for HF patients
    corecore