1,065 research outputs found

    The synergistic effect of carbon performance and technological innovation on corporate financial performance

    Get PDF
    In order to further implement the goal of “dual carbon” proposed by China’s government, and promote energy enterprises to carry out low-carbon economic transformation, this paper takes listed companies in China’s A-share energy industry from 2014 to 2019 as samples to conduct descriptive statistics, correlation test and regression analysis, and empirically studies the impact of carbon performance and technological innovation on financial performance of China’s energy industry as well as their roles under different property rights. At the same time, the variables were delayed for one period to investigate the sustainability of carbon performance and technological innovation on financial performance and to weaken the endogeneity of the reverse causality between financial performance, carbon performance and technological innovation. The results show that good carbon performance and technological innovation in the energy industry can positively affect the financial performance of enterprises. During the research of interactive relationship, we find that carbon performance and technological innovation have synergistic effect on energy firm’s financial performance, which means technology innovation can significantly positive to adjust the action of carbon performance on financial performance,and carbon performance at the same time can also be positive to adjust the action of technology innovation on financial performance. They mutually promote energy enterprise’s financial performance. Further experimental research among different property- rights-owned enterprises, we found that the synergistic effects of carbon performance and technological innovation on corporate financial performance is much more significant in non-state-owned enterprises, possibly due to private firms’ capital profit-seeking nature. The results will guide and inspire China’s energy enterprises’ low carbon development strategy formulation and implementation under the background of “dual carbon” goal

    Effect of drug-to-lipid ratio on nanodisc-based tenofovir drug delivery to the brain for HIV-1 infection

    Get PDF
    Background: Combination antiretroviral therapy has significantly advanced HIV-1 infection treatment. However, HIV-1 remains persistent in the brain; the inaccessibility of the blood–brain barrier allows for persistent HIV-1 infections and neuroinflammation. Nanotechnology-based drug carriers such as nanodiscoidal bicelles can provide a solution to combat this challenge. Methods: This study investigated the safety and extended release of a combination antiretroviral therapy drug (tenofovir)-loaded nanodiscs for HIV-1 treatment in the brain both in vitro and in vivo. Result: The nanodiscs entrapped the drug in their interior hydrophobic core and released the payload at the desired location and in a controlled release pattern. The study also included a comparative pharmacokinetic analysis of nanodisc formulations in in vitro and in vivo models. Conclusion: The study provides potential applications of nanodiscs for HIV-1 therapy development

    Convergent activation of Ca2+ permeability in two-pore channel 2 through distinct molecular routes

    Get PDF
    TPC2 is a pathophysiologically relevant lysosomal ion channel that is activated directly by the phosphoinositide PI(3,5)P2 and indirectly by the calcium ion (Ca2+)-mobilizing molecule NAADP through accessory proteins that associate with the channel. TPC2 toggles between PI(3,5)P2-induced, sodium ion (Na+)-selective and NAADP-induced, Ca2+-permeable states in response to these cues. To address the molecular basis of polymodal gating and ion-selectivity switching, we investigated the mechanism by which NAADP and its synthetic functional agonist, TPC2-A1-N, induced Ca2+ release through TPC2 in human cells. Whereas NAADP required the NAADP-binding proteins JPT2 and LSM12 to evoke endogenous calcium ion signals, TPC2-A1-N did not. Residues in TPC2 that bind to PI(3,5)P2 were required for channel activation by NAADP but not for activation by TPC2-A1-N. The cryptic voltage-sensing region of TPC2 was required for the actions of TPC2-A1-N and PI(3,5)P2 but not for those of NAADP. These data mechanistically distinguish natural and synthetic agonist action at TPC2 despite convergent effects on Ca2+ permeability and delineate a route for pharmacologically correcting impaired NAADP-evoked Ca2+ signals

    EC-BLAST: a tool to automatically search and compare enzyme reactions.

    Get PDF
    We present EC-BLAST (http://www.ebi.ac.uk/thornton-srv/software/rbl/), an algorithm and Web tool for quantitative similarity searches between enzyme reactions at three levels: bond change, reaction center and reaction structure similarity. It uses bond changes and reaction patterns for all known biochemical reactions derived from atom-atom mapping across each reaction. EC-BLAST has the potential to improve enzyme classification, identify previously uncharacterized or new biochemical transformations, improve the assignment of enzyme function to sequences, and assist in enzyme engineering

    Simulating eddy current sensor outputs for blade tip timing

    Get PDF
    Blade tip timing is a contactless method used to monitor the vibration of blades in rotating machinery. Blade vibration and clearance are important diagnostic features for condition monitoring, including the detection of blade cracks. Eddy current sensors are a practical choice for blade tip timing and have been used extensively. As the data requirements from the timing measurement become more stringent and the systems become more complicated, including the use of multiple sensors, the ability to fully understand and optimize the measurement system becomes more important. This requires detailed modeling of eddy current sensors in the blade tip timing application; the current approaches often rely on experimental trials. Existing simulations for eddy current sensors have not considered the particular case of a blade rotating past the sensor. Hence, the novel aspect of this article is the development of a detailed quasi-static finite element model of the electro-magnetic field to simulate the integrated measured output of the sensor. This model is demonstrated by simulating the effect of tip clearance, blade geometry, and blade velocity on the output of the eddy current sensor. This allows an understanding of the sources of error in the blade time of arrival estimate and hence insight into the accuracy of the blade vibration measurement

    Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.http://deepblue.lib.umich.edu/bitstream/2027.42/78260/1/1465-9921-11-131.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78260/2/1465-9921-11-131.pdfPeer Reviewe

    Photosensitive drugs: a review on their photoprotection by liposomes and cyclodextrins.

    Get PDF
    Nowadays, an exciting challenge in the drug chemistry and technology research is represented by the development of methods aimed to protect molecular integrity and therapeutic activity of drugs from effects of light. The photostability characterization is ruled by ICH (The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use), which releases details throughout basic protocols of stability tests to be performed on new medicinal products for human use. The definition of suitable photoprotective systems is fundamental for pharmaceutical manufacturing and for human healthy as well, since light exposure may affect either drugs or drug formulations giving rise even to allergenic or mutagenic by-products. Here, we summarize and discuss the recent studies on the formulation of photosensitive drugs into supramolecular systems, capable of entrapping the molecules in a hollow of their structure by weak noncovalent interactions and protecting them from light. The best known supramolecular matrices belong to the 'auto-assembled' structures, of which liposomes are the most representative, and the 'host-guest' systems, of which cyclodextrins represent the most common 'host' counterpart. A relevant number of papers concerning the use of both liposomes and cyclodextrins as photoprotection systems for drugs has been published over the last 20 years, demonstrating that this topic captures interest in an increasing number of researchers

    Influence of autozygosity on common disease risk across the phenotypic spectrum.

    Get PDF
    Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity
    • …
    corecore