103 research outputs found

    Chemo-radiation with or without mandatory split in anal carcinoma: experiences of two institutions and review of the literature

    Get PDF
    BACKGROUND: The split-course schedule of chemo-radiation for anal cancer is controversial. METHODS: Eighty-four patients with invasive anal cancer treated with definitive external beam radiotherapy (RT) with a mandatory split of 12 days (52 patients, Montreal, Canada) or without an intended split (32 patients, Zurich, Switzerland) were reviewed. Total RT doses were 52 Gy (Montreal) or 59.4 Gy (Zurich) given concurrently with 5-FU/MMC. RESULTS: After a mean follow-up of 40 +/- 27 months, overall survival and local tumor control at 5 years were 57% and 78% (Zurich) compared to 67% and 82% (Montreal), respectively. Split duration of patients with or without local relapse was 15 +/- 7 d vs. 14 +/- 7 d (Montreal, NS) and 11 +/- 11 d vs. 5 +/- 7 d (Zurich; P or = 7 d) had impaired cancer-specific survival compared with patients with only minor interruption (<7 d) (P = 0.06). Bowel toxicity was associated with prolonged RT (P = 0.03) duration as well as increased relapse probability (P = 0.05). Skin toxicity correlated with institution and was found in 79% (Montreal) and 28% (Zurich) (P < 0.0001). CONCLUSIONS: The study design did not allow demonstrating a clear difference in efficacy between the treatment regimens with or without short mandatory split. Cause-specific outcome appears to be impaired by unplanned prolonged interruption

    Methicillin Resistance Alters the Biofilm Phenotype and Attenuates Virulence in Staphylococcus aureus Device-Associated Infections

    Get PDF
    Clinical isolates of Staphylococcus aureus can express biofilm phenotypes promoted by the major cell wall autolysin and the fibronectin-binding proteins or the icaADBC-encoded polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG). Biofilm production in methicillin-susceptible S. aureus (MSSA) strains is typically dependent on PIA/PNAG whereas methicillin-resistant isolates express an Atl/FnBP-mediated biofilm phenotype suggesting a relationship between susceptibility to β-lactam antibiotics and biofilm. By introducing the methicillin resistance gene mecA into the PNAG-producing laboratory strain 8325-4 we generated a heterogeneously resistant (HeR) strain, from which a homogeneous, high-level resistant (HoR) derivative was isolated following exposure to oxacillin. The HoR phenotype was associated with a R602H substitution in the DHHA1 domain of GdpP, a recently identified c-di-AMP phosphodiesterase with roles in resistance/tolerance to β-lactam antibiotics and cell envelope stress. Transcription of icaADBC and PNAG production were impaired in the 8325-4 HoR derivative, which instead produced a proteinaceous biofilm that was significantly inhibited by antibodies against the mecA-encoded penicillin binding protein 2a (PBP2a). Conversely excision of the SCCmec element in the MRSA strain BH1CC resulted in oxacillin susceptibility and reduced biofilm production, both of which were complemented by mecA alone. Transcriptional activity of the accessory gene regulator locus was also repressed in the 8325-4 HoR strain, which in turn was accompanied by reduced protease production and significantly reduced virulence in a mouse model of device infection. Thus, homogeneous methicillin resistance has the potential to affect agr- and icaADBC-mediated phenotypes, including altered biofilm expression and virulence, which together are consistent with the adaptation of healthcare-associated MRSA strains to the antibiotic-rich hospital environment in which they are frequently responsible for device-related infections in immuno-compromised patients

    Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Comparable data on the global and country-specific burden of neurological disorders and their trends are crucial for health-care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study provides such information but does not routinely aggregate results that are of interest to clinicians specialising in neurological conditions. In this systematic analysis, we quantified the global disease burden due to neurological disorders in 2015 and its relationship with country development level. Methods We estimated global and country-specific prevalence, mortality, disability-adjusted life-years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs) for various neurological disorders that in the GBD classification have been previously spread across multiple disease groupings. The more inclusive grouping of neurological disorders included stroke, meningitis, encephalitis, tetanus, Alzheimer's disease and other dementias, Parkinson's disease, epilepsy, multiple sclerosis, motor neuron disease, migraine, tension-type headache, medication overuse headache, brain and nervous system cancers, and a residual category of other neurological disorders. We also analysed results based on the Socio-demographic Index (SDI), a compound measure of income per capita, education, and fertility, to identify patterns associated with development and how countries fare against expected outcomes relative to their level of development. Findings Neurological disorders ranked as the leading cause group of DALYs in 2015 (250·7 [95% uncertainty interval (UI) 229·1 to 274·7] million, comprising 10·2% of global DALYs) and the second-leading cause group of deaths (9·4 [9·1 to 9·7] million], comprising 16·8% of global deaths). The most prevalent neurological disorders were tension-type headache (1505·9 [UI 1337·3 to 1681·6 million cases]), migraine (958·8 [872·1 to 1055·6] million), medication overuse headache (58·5 [50·8 to 67·4 million]), and Alzheimer's disease and other dementias (46·0 [40·2 to 52·7 million]). Between 1990 and 2015, the number of deaths from neurological disorders increased by 36·7%, and the number of DALYs by 7·4%. These increases occurred despite decreases in age-standardised rates of death and DALYs of 26·1% and 29·7%, respectively; stroke and communicable neurological disorders were responsible for most of these decreases. Communicable neurological disorders were the largest cause of DALYs in countries with low SDI. Stroke rates were highest at middle levels of SDI and lowest at the highest SDI. Most of the changes in DALY rates of neurological disorders with development were driven by changes in YLLs. Interpretation Neurological disorders are an important cause of disability and death worldwide. Globally, the burden of neurological disorders has increased substantially over the past 25 years because of expanding population numbers and ageing, despite substantial decreases in mortality rates from stroke and communicable neurological disorders. The number of patients who will need care by clinicians with expertise in neurological conditions will continue to grow in coming decades. Policy makers and health-care providers should be aware of these trends to provide adequate services

    Accelerating the DC algorithm for smooth functions

    No full text
    We introduce two new algorithms to minimise smooth difference of convex (DC) functions that accelerate the convergence of the classical DC algorithm (DCA). We prove that the point computed by DCA can be used to define a descent direction for the objective function evaluated at this point. Our algorithms are based on a combination of DCA together with a line search step that uses this descent direction. Convergence of the algorithms is proved and the rate of convergence is analysed under the Łojasiewicz property of the objective function. We apply our algorithms to a class of smooth DC programs arising in the study of biochemical reaction networks, where the objective function is real analytic and thus satisfies the Łojasiewicz property. Numerical tests on various biochemical models clearly show that our algorithms outperforms DCA, being on average more than four times faster in both computational time and the number of iterations. The algorithms are globally convergent to a non-equilibrium steady state of a biochemical network, with only chemically consistent restrictions on the network topology

    Local convergence of the Levenberg-Marquardt method under Holder metric subregularity

    No full text
    status: publishe

    Differential remodeling of a T-cell transcriptome following CD8- versus CD3-induced signaling.

    No full text
    CD8 engagement with class I major histocompatibility antigens greatly enhances T-cell activation, but it is not clear how this is achieved. We address the question of whether or not the antibody-mediated ligation of CD8 alone induces transcriptional remodeling in a T-cell clone, using serial analysis of gene expression. Even though it fails to induce overt phenotypic changes, we find that CD8 ligation profoundly alters transcription in the T-cell clone, at a scale comparable to that induced by antibody-mediated ligation of CD3. The character of the resulting changes is distinct, however, with the net effect of CD8 ligation being substantially inhibitory. We speculate that ligating CD8 induces weak, T-cell receptor (TCR)-mediated inhibitory signals reminiscent of the effects of TCR antagonists. Our results imply that CD8 ligation alone is incapable of activating the T-cell clone because it fails to fully induce NFAT-dependent transcription
    corecore