51 research outputs found

    Declining recurrence among ductal carcinoma in situ patients treated with breast-conserving surgery in the community setting

    Get PDF
    Introduction: Randomized trials indicate that adjuvant radiotherapy plus tamoxifen decrease the five-year risk of recurrence among ductal carcinoma in situ patients treated with breast-conserving surgery from about 20% to 8%. The aims of this study were to examine the use and impact of these therapies on risk of recurrence among ductal carcinoma in situ patients diagnosed and treated in the community setting. Methods: We identified 2,995 patients diagnosed with ductal carcinoma in situ between 1990 and 2001 and treated with breast-conserving surgery at three large health plans. Medical charts were reviewed to confirm diagnosis and treatment and to obtain information on subsequent breast cancers. On a subset of patients, slides from the index ductal carcinoma in situ were reviewed for histopathologic features. Cumulative incidence curves were generated and Cox regression was used to examine changes in five-year risk of recurrence across diagnosis years, with and without adjusting for trends in use of adjuvant therapies. Results: Use of radiotherapy increased from 25.8% in 1990-1991 to 61.3% in 2000-2001; tamoxifen increased from 2.3% to 34.4%. A total of 245 patients had a local recurrence within five years of their index ductal carcinoma in situ. The five-year risk of any local recurrence decreased from 14.3% (95% confidence interval 9.8 to 18.7) for patients diagnosed in 1990-1991 to 7.7% (95% confidence interval 5.5 to 9.9) for patients diagnosed in 1998-1999; invasive recurrence decreased from 7.0% (95% confidence interval 3.8 to 10.3) to 3.1% (95% confidence interval 1.7 to 4.6). In Cox models, the association between diagnosis year and risk of recurrence was modestly attenuated after accounting for use of adjuvant therapy. Between 1990-1991 and 2000-2001, the proportion of patients with tumors with high nuclear grade decreased from 46% to 32% (P = 0.03) and those with involved surgical margins dropped from 15% to 0% (P = 0.03). Conclusions: The marked increase in the 1990s in the use of adjuvant therapy for ductal carcinoma in situ patients treated with breast-conserving surgery in the community setting only partially explains the 50% decline in risk of recurrence. Changes in pathology factors have likely also contributed to this decline

    Noise-Driven Stem Cell and Progenitor Population Dynamics

    Get PDF
    BACKGROUND: The balance between maintenance of the stem cell state and terminal differentiation is influenced by the cellular environment. The switching between these states has long been understood as a transition between attractor states of a molecular network. Herein, stochastic fluctuations are either suppressed or can trigger the transition, but they do not actually determine the attractor states. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel mathematical concept in which stem cell and progenitor population dynamics are described as a probabilistic process that arises from cell proliferation and small fluctuations in the state of differentiation. These state fluctuations reflect random transitions between different activation patterns of the underlying regulatory network. Importantly, the associated noise amplitudes are state-dependent and set by the environment. Their variability determines the attractor states, and thus actually governs population dynamics. This model quantitatively reproduces the observed dynamics of differentiation and dedifferentiation in promyelocytic precursor cells. CONCLUSIONS/SIGNIFICANCE: Consequently, state-specific noise modulation by external signals can be instrumental in controlling stem cell and progenitor population dynamics. We propose follow-up experiments for quantifying the imprinting influence of the environment on cellular noise regulation.Engineering and Applied SciencesOther Research Uni

    Changes in Corneal Basal Epithelial Phenotypes in an Altered Basement Membrane

    Get PDF
    To examine the corneal epithelial phenotype in an altered basement membrane.Corneas from 9 patients with symptoms of continuous unstable corneal curvature (CUCC) were harvested by penetrating keratoplasty and subjected to histology examination and immunohistochemical staining with transactivating and N-terminally truncated pP63 transcript (ΔNp63), cytokeratin 3 (Krt3), ATP-binding cassette sub-family G member 2 (ABCG2), connexin 43 (CX43), p38 mitogen-activated protein kinases (p38MAPK), activating protein 2 (TFAP2), and extracellular signal-regulated kinase (Erk1/2) monoclonal antibodies. Positive immunostaining with ABCG2, p38MAPK, and TFAP2 monoclonal antibodies was observed in the basal epithelial cells of CUCC patients, and CX43 and ΔNp63 were detected in the full-thickness epithelial cells of CUCC patients.Our results indicate that alteration of the corneal basement membrane induces a de-differentiation-like phenotype in corneal basal epithelial cells

    Lactation intensity and postpartum maternal glucose tolerance and insulin resistance

    Get PDF
    OBJECTIVEdTo examine the association between breastfeeding intensity in relation to maternal blood glucose and insulin and glucose intolerance based on the postpartum 2-h 75-g oral glucose tolerance test (OGTT) results at 6-9 weeks after a pregnancy with gestational diabetes mellitus (GDM). RESEARCH DESIGN AND METHODSdWe selected 522 participants enrolled into the Study of Women, Infant Feeding, and Type 2 Diabetes (SWIFT), a prospective observational cohort study of Kaiser Permanente Northern California members diagnosed with GDM using the 3-h 100-g OGTT by the Carpenter and Coustan criteria. Women were classified as normal, prediabetes, or diabetes according to American Diabetes Association criteria based on the postpartum 2-h 75-g OGTT results. RESULTSdCompared with exclusive or mostly formula feeding (.17 oz formula per 24 h), exclusive breastfeeding and mostly breastfeeding (#6 oz formula per 24 h) groups, respectively, had lower adjusted mean (95% CI) group differences in fasting plasma glucose (mg/dL) of 24.3 (27.4 to 21.3) and 25.0 (28.5 to 21.4), in fasting insulin (mU/mL) of 26.3 (210.1 to 22.4) and 27.5 (211.9 to 23.0), and in 2-h insulin of 221.4 (241.0 to 21.7) and 236.5 (259.3 to 213.7) (all P , 0.05). Exclusive or mostly breastfeeding groups had lower prevalence of diabetes or prediabetes (P = 0.02). CONCLUSIONSdHigher intensity of lactation was associated with improved fasting glucose and lower insulin levels at 6-9 weeks' postpartum. Lactation may have favorable effects on glucose metabolism and insulin sensitivity that may reduce diabetes risk after GDM pregnancy. 35:50-56, 2012 Diabetes Car

    Similar NF-κB Gene Signatures in TNF-α Treated Human Endothelial Cells and Breast Tumor Biopsies

    Get PDF
    BACKGROUND: Endothelial dysfunction has been implicated in the pathogenesis of diverse pathologies ranging from vascular and immune diseases to cancer. TNF-α is one of the mediators of endothelial dysfunction through the activation of transcription factors, including NF-κB. While HUVEC (macrovascular cells) have been largely used in the past, here, we documented an NF-κB gene signature in TNFα-stimulated microvascular endothelial cells HMEC often used in tumor angiogenesis studies. METHODOLOGY/PRINCIPAL FINDINGS: We measured mRNA expression of 55 NF-κB related genes using quantitative RT-PCR in HUVEC and HMEC. Our study identified twenty genes markedly up-regulated in response to TNFα, including adhesion molecules, cytokines, chemokines, and apoptosis regulators, some of them being identified as TNF-α-inducible genes for the first time in endothelial cells (two apoptosis regulators, TNFAIP3 and TNFRSF10B/Trail R2 (DR5), the chemokines GM-CSF/CSF2 and MCF/CSF1, and CD40 and TNF-α itself, as well as NF-κB components (RELB, NFKB1 or 50/p105 and NFKB2 or p52/p100). For eight genes, the fold induction was much higher in HMEC, as compared to HUVEC. Most importantly, our study described for the first time a connection between NF-κB activation and the induction of most, if not all, of these genes in HMEC as evaluated by pharmacological inhibition and RelA expression knock-down by RNA interference. Moreover, since TNF-α is highly expressed in tumors, we further applied the NF-κB gene signature documented in TNFα-stimulated endothelial cells to human breast tumors. We found a significant positive correlation between TNF and the majority (85 %) of the identified endothelial TNF-induced genes in a well-defined series of 96 (48 ERα positive and 48 ERα negative) breast tumors. CONCLUSION/SIGNIFICANCE: Taken together these data suggest the potential use of this NF-κB gene signature in analyzing the role of TNF-α in the endothelial dysfunction, as well as in breast tumors independently of the presence of ERα

    The study of women, infant feeding and type 2 diabetes after GDM pregnancy and growth of their offspring (SWIFT Offspring study): prospective design, methodology and baseline characteristics

    Get PDF
    Abstract Background Breastfeeding is associated with reduced risk of becoming overweight or obese later in life. Breastfed babies grow more slowly during infancy than formula-fed babies. Among offspring exposed in utero to maternal glucose intolerance, prospective data on growth during infancy have been unavailable. Thus, scientific evidence is insufficient to conclude that breastfeeding reduces the risk of obesity among the offspring of diabetic mothers (ODM). To address this gap, we devised the Study of Women, Infant Feeding and Type 2 Diabetes after GDM Pregnancy and Growth of their Offspring, also known as the SWIFT Offspring Study. This prospective, longitudinal study recruited mother-infant pairs from the SWIFT Study, a prospective study of women with recent gestational diabetes mellitus (GDM). The goal of the SWIFT Offspring Study is to determine whether breastfeeding intensity and duration, compared with formula feeding, are related to slower growth of GDM offspring during the first year life. This article details the study design, participant eligibility, data collection, and methodologies. We also describe the baseline characteristics of the GDM mother-infant pairs. Methods The study enrolled 466 mother-infant pairs among GDM deliveries in northern California from 2009–2011. Participants attended three in-person study exams at 6–9 weeks, 6 months and 12 months after delivery for infant anthropometry (head circumference, body weight, length, abdominal circumference and skinfold thicknesses), as well as maternal anthropometry (body weight, waist circumference and percent body fat). Mothers also completed questionnaires on health and lifestyle behaviors, including infant diet, sleep and temperament. Breastfeeding intensity and duration were assessed via several sources (diaries, telephone interviews, monthly mailings and in-person exams) from birth through the first year of life. Pregnancy course, clinical perinatal and newborn outcomes were obtained from health plan electronic medical records. Infant saliva samples were collected and stored for genetics studies. Discussion This large, racially and ethnically diverse cohort of GDM offspring will enable evaluation of the relationship of infant feeding to growth during infancy independent of perinatal characteristics, sociodemographics and other risk factors. The longitudinal design provides the first quantitative measures of breastfeeding intensity and duration among GDM offspring during early life

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications
    • …
    corecore