46 research outputs found
Lignin biomarkers as tracers of mercury sources in lakes water column
This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems
Statistical Inference for Valued-Edge Networks: Generalized Exponential Random Graph Models
Across the sciences, the statistical analysis of networks is central to the
production of knowledge on relational phenomena. Because of their ability to
model the structural generation of networks, exponential random graph models
are a ubiquitous means of analysis. However, they are limited by an inability
to model networks with valued edges. We solve this problem by introducing a
class of generalized exponential random graph models capable of modeling
networks whose edges are valued, thus greatly expanding the scope of networks
applied researchers can subject to statistical analysis
Regulatory Effect of Connexin 43 on Basal Ca2+ Signaling in Rat Ventricular Myocytes
Background: It has been found that gap junction-associated intracellular Ca 2+ [Ca 2+]i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca 2+ signaling, in particular the basal [Ca 2+] i activities, is unclear. Methods and Results: Global and local Ca 2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs) and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY), respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43) with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca 2+ transients and local Ca 2+ sparks in monolayer NRVMs and Ca 2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP3 butyryloxymethyl ester) and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca 2+ signal and LY uptake by gap uncouplers, whereas blockade of IP 3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca 2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibod
Social Correlates of and Reasons for Primate Meat Consumption in Central Amazonia
Traditionally, humans have consumed nonhuman primates in many places, including throughout the Amazon region. However, primate consumption rates are changing with rising urbanization and market access. We characterize primate consumption in central Amazonia using 192 qualitative interviews with inhabitants in three rural villages and in the city of Tefé. We used a generalized linear model to investigate how individual consumer characteristics, such as age and gender, and livelihoods affected primate consumption. We also used principal coordinate analysis (PCoA), and word clouds and network text analyses, to describe reasons people gave for eating or avoiding primates. Our results show that men were more likely to say that they eat primates than women, and that the probability that a person said that they eat primates correlated positively with the percentage of their life lived in rural areas. People gave sentiment and ethical reasons not to eat primates. Custom influenced whether people said they eat primates both positively and negatively, while taste positively influenced whether people said they eat primates. A preference for other wild meats in rural areas, and for domestic meats in cities negatively influenced whether people said they eat primates. People also cited the perceptions that primates have a human-like appearance and that primate meat is unhealthy as reasons not to eat primates. People in urban areas also cited conservation attitudes as reasons for not eating primates. Our findings provide an understanding of factors influencing primate consumption in our study area and will be useful for designing tailored conservation initiatives by reducing hunting pressure on primates in rural settings and increasing the effectiveness of outreach campaigns in urban centers
Ancient origin of the biosynthesis of lignin precursors
BACKGROUND: Lignin plays an important role in plant structural support and water transport, and is considered one of the hallmarks of land plants. The recent discovery of lignin or its precursors in various algae has raised questions on the evolution of its biosynthetic pathway, which could be much more ancient than previously thought. To determine the taxonomic distribution of the lignin biosynthesis genes, we screened all publicly available genomes of algae and their closest non-photosynthetic relatives, as well as representative land plants. We also performed phylogenetic analysis of these genes to decipher the evolution and origin(s) of lignin biosynthesis. RESULTS: Enzymes involved in making p-coumaryl alcohol, the simplest lignin monomer, are found in a variety of photosynthetic eukaryotes, including diatoms, dinoflagellates, haptophytes, cryptophytes as well as green and red algae. Phylogenetic analysis of these enzymes suggests that they are ancient and spread to some secondarily photosynthetic lineages when they acquired red and/or green algal endosymbionts. In some cases, one or more of these enzymes was likely acquired through lateral gene transfer (LGT) from bacteria. CONCLUSIONS: Genes associated with p-coumaryl alcohol biosynthesis are likely to have evolved long before the transition of photosynthetic eukaryotes to land. The original function of this lignin precursor is therefore unlikely to have been related to water transport. We suggest that it participates in the biological defense of some unicellular and multicellular algae. REVIEWERS: This article was reviewed by Mark Ragan, Uri Gophna, Philippe Deschamps