46 research outputs found

    Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus

    Get PDF
    Phage therapy offers a potential alternate strategy for the treatment of peri-prosthetic joint infection (PJI), particularly where limited effective antibiotics are available. We undertook preclinical trials to investigate the therapeutic efficacy of a phage cocktail, alone and in combination with vancomycin, to reduce bacterial numbers within the infected joint using a clinically-relevant model of Staphylococcus aureus-induced PJI. Infected animals were randomised to 4 treatment groups, with treatment commencing 21-days post-surgery: bacteriophage alone, vancomycin alone, bacteriophage and vancomycin, and sham. At day 28 post-surgery, animals were euthanised for microbiological and immunological assessment of implanted joints. Treatment with phage alone or vancomycin alone, led to 5-fold and 6.2-fold reductions, respectively in bacterial load within peri-implant tissue compared to shamtreated animals. Compared to sham-treated animals, a 22.5-fold reduction in S. aureus burden was observed within joint tissue of animals that were administered phage in combination with vancomycin, corresponding with decreased swelling in the implanted knee. Microbiological data were supported by evidence of decreased inflammation within the joints of animals administered phage in combination with vancomycin, compared to sham-treated animals. Our findings provide further support for phage therapy as a tolerable and effective adjunct treatment for PJI

    Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support

    Get PDF
    Surgical management of tetralogy of Fallot (TOF) results in anatomic and functional abnormalities in the majority of patients. Although right ventricular volume load due to severe pulmonary regurgitation can be tolerated for many years, there is now evidence that the compensatory mechanisms of the right ventricular myocardium ultimately fail and that if the volume load is not eliminated or reduced by pulmonary valve replacement the dysfunction might be irreversible. Cardiovascular magnetic resonance (CMR) has evolved during the last 2 decades as the reference standard imaging modality to assess the anatomic and functional sequelae in patients with repaired TOF. This article reviews the pathophysiology of chronic right ventricular volume load after TOF repair and the risks and benefits of pulmonary valve replacement. The CMR techniques used to comprehensively evaluate the patient with repaired TOF are reviewed and the role of CMR in supporting clinical decisions regarding pulmonary valve replacement is discussed

    Integrating Functional and Structural Connectivities via Diffusion-Convolution-Bilinear Neural Network

    No full text
    Traditional brain network methods usually focus on either functional connectivity (FC) or structural connectivity (SC) for describing node interactions and only consider the interaction between paired network nodes. Therefore, the underlying relationship between FC and SC, as well as the complicated interactions among network nodes, has not been sufficiently studied and fully utilized to discover disease-related biomarkers. To tackle these problems, we propose a Diffusion-Convolution-Bilinear Neural Network (DCB-NN) framework for brain network analysis, which couples FC and SC seamlessly and considers wider interactions among network nodes. Specifically, a brain network model (graph) is first defined, whose edges are determined by neural fiber physical connections extracted from DTI and node features are governed by brain activities extracted from fMRI. Then, based on this model, we build two DCB modules to extract multi-scale features from this brain network. Each DCB module consists of diffusion, convolution and bilinear pooling. Through diffusion guided by physical connections, the network node features not only reflect the activities in their corresponding brain regions, but also are influenced by the activities from other brain regions. These enhanced node features are nonlinearly weighed through 1-D convolution, and their second-order statistics are further extracted by bilinear pooling for disease prediction. In order to capture node interactions at multi-scale, we include two DCB modules, corresponding to one-step and two-step diffusions, respectively. The whole model is trained in an end-to-end way. Experiments on a real epilepsy dataset demonstrate the effectiveness and advantages of our proposed method

    Assessment of myocardial function in pediatric patients with operated tetralogy of Fallot: preliminary results with 2D strain echocardiography

    Full text link
    The global myocardial function in patients after repair of tetralogy of Fallot (TOF) can be assessed by cardiovascular magnetic resonance (CMR) and measurement of B-type natriuretic peptides. Two-dimensional echocardiography-derived strain and strain rate (2D strain) facilitate the assessment of regional myocardial function. We evaluated myocardial function in 16 children with residual severe pulmonary valve regurgitation and right ventricular (RV) volume overload after TOF repair before, 1 month after, and 6 months after pulmonary valve replacement (PVR). In 2D strain echocardiography preoperatively, the longitudinal systolic RV strain was reduced (p < 0.05). One month after PVR, longitudinal systolic RV strain decreased further (p < 0.05), while systolic and early diastolic radial left ventricular strain and strain rate increased (each p < 0.05), followed by a return toward preoperative values after 6 months. Six months after PVR, preoperatively elevated RV end-diastolic volume (p < 0.01) assessed by CMR and N-terminal pro-B-type natriuretic peptide (p < 0.05) decreased. In conclusion, the impairment of the regional myocardial after TOF repair and transient changes after PVR can be subtly analyzed by 2D strain echocardiography in addition to the established assessment of myocardial function with CMR and measurement of B-type natriuretic peptides
    corecore