109 research outputs found

    Learners Self-directing Learning in FutureLearn MOOCs: A Learner-Centered Study

    Get PDF
    This qualitative research study focuses on how experienced online learners self-direct their learning while engaging in a MOOC delivered on the FutureLearn platform. Self-directed learning is an important concept within informal learning and online learning. This study distinguishes itself from previous MOOC learner studies, by reporting the self-directed learning using a bottom-up approach. By looking at self-reported learning logs and interview transcripts an in-depth analysis of the self-directed learning is achieved. The data analysis used constructed grounded theory, which aligns with the bottom-up approach where the learner data is coded and investigated in an open, yet evidence-based way, leaving room for insights to emerge from the learner data. The data corpus is based on 56 participants following three FutureLearn MOOCs, providing 147 learning logs and 19 semi-structured one-on-one interviews with a selection of participants. The results show five specific areas in which learners react with either the material or other learners to self-direct their learning: context, individual or social learning, technology and media provided in the MOOCs, learner characteristics and organising learning. This study also indicates how intrinsic motivation and personal learning goals are the main inhibitors or enablers of self-directed learning

    Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Staphylococcus aureus </it>and Coagulase-negative staphylococci (CoNS) are a major source of infections associated with indwelling medical devices. Many antiseptic agents are used in hygienic handwash to prevent nosocomial infections by Staphylococci. Our aim was to determine the antibiotic susceptibility and resistance to quaternary ammonium compound of 46 <it>S. aureus </it>strains and 71 CoNS.</p> <p>Methods</p> <p><it>S. aureus </it>(n = 46) isolated from auricular infection and CoNS (n = 71), 22 of the strains isolated from dialysis fluids and 49 of the strains isolated from needles cultures were investigated. Erythromycin resistance genes (<it>erm</it>A, <it>erm</it>B, <it>erm</it>C, <it>msr</it>A and <it>mef</it>) were analysed by multiplex PCR and disinfectant-resistant genes (<it>qac</it>A, <it>qac</it>B, and <it>qac</it>C) were studied by PCR-RFLP.</p> <p>Results</p> <p>The frequency of erythromycin resistance genes in <it>S. aureus </it>was: <it>erm</it>A+ 7.7%, <it>erm</it>B+ 13.7%, <it>erm</it>C+ 6% and <it>msr</it>A+ 10.2%. In addition, the number of positive isolates in CoNS was respectively <it>erm</it>A+ (9.4%), <it>erm</it>B+ (11.1%), <it>erm</it>C+ (27.4%), and <it>msr</it>A+ (41%). The MIC analyses revealed that 88 isolates (74%) were resistant to quaternary ammonium compound-based disinfectant benzalkonium chloride (BC). 56% of the BC-resistant staphylococcus isolates have at least one of the three resistant disinfectants genes (<it>qac</it>A, <it>qac</it>B and <it>qac</it>C). Nine strains (7.7%) among the CoNS species and two <it>S. aureus </it>strains (2%) harboured the three-<it>qac </it>genes. In addition, the <it>qac</it>C were detected in 41 strains.</p> <p>Conclusions</p> <p>Multi-resistant strains towards macrolide and disinfectant were recorded. The investigation of antibiotics and antiseptic-resistant CoNS may provide crucial information on the control of nosocomial infections.</p

    A chronic fatigue syndrome – related proteome in human cerebrospinal fluid

    Get PDF
    BACKGROUND: Chronic Fatigue Syndrome (CFS), Persian Gulf War Illness (PGI), and fibromyalgia are overlapping symptom complexes without objective markers or known pathophysiology. Neurological dysfunction is common. We assessed cerebrospinal fluid to find proteins that were differentially expressed in this CFS-spectrum of illnesses compared to control subjects. METHODS: Cerebrospinal fluid specimens from 10 CFS, 10 PGI, and 10 control subjects (50 μl/subject) were pooled into one sample per group (cohort 1). Cohort 2 of 12 control and 9 CFS subjects had their fluids (200 μl/subject) assessed individually. After trypsin digestion, peptides were analyzed by capillary chromatography, quadrupole-time-of-flight mass spectrometry, peptide sequencing, bioinformatic protein identification, and statistical analysis. RESULTS: Pooled CFS and PGI samples shared 20 proteins that were not detectable in the pooled control sample (cohort 1 CFS-related proteome). Multilogistic regression analysis (GLM) of cohort 2 detected 10 proteins that were shared by CFS individuals and the cohort 1 CFS-related proteome, but were not detected in control samples. Detection of ≥1 of a select set of 5 CFS-related proteins predicted CFS status with 80% concordance (logistic model). The proteins were α-1-macroglobulin, amyloid precursor-like protein 1, keratin 16, orosomucoid 2 and pigment epithelium-derived factor. Overall, 62 of 115 proteins were newly described. CONCLUSION: This pilot study detected an identical set of central nervous system, innate immune and amyloidogenic proteins in cerebrospinal fluids from two independent cohorts of subjects with overlapping CFS, PGI and fibromyalgia. Although syndrome names and definitions were different, the proteome and presumed pathological mechanism(s) may be shared

    Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins.

    Get PDF
    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV

    Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    The role of epigenetics in renal ageing

    Get PDF
    An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects

    Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

    Get PDF
    published_or_final_versio

    Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    Get PDF
    published_or_final_versio

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio
    corecore