4 research outputs found

    High dose interleukin-2 (Aldesleukin) - expert consensus on best management practices-2014

    Get PDF
    Interleukin-2 (IL-2) was historically one of the few treatments for adults with stage IV solid tumors that could produce complete responses (CRs) that were often durable for decades without further therapy. The majority of complete responders with metastatic renal cell carcinoma (mRCC) and metastatic melanoma (mM) could probably be classified as "cures". Recent publications have suggested improved efficacy, perhaps due to improved patient Selection based on a better understanding of clinical features predicting outcomes. Guidelines for clinical management were established from experience at the National Cancer Institute (NCI) and an affiliation of institutions known as the Cytokine Working Group (CWG), who were among the first to utilize HD IL-2 treatment outside of the NCI. As new centers have opened, further management variations have emerged based upon center-specific experience, to optimize administration of IL-2 and provide high quality care for patients at each individual site. Twenty years of evolution in differing environments has led to a plethora of clinical experience and effective management approaches. The goal of this review is to summarize the spectrum of HD IL-2 treatment approaches, describing various effective strategies that incorporate newer adjunctive treatments for managing the side effects of IL-2 in patients with mRCC and mM. The goal for IL-2 therapy is typically to administer the maximum number of doses of IL-2 without putting the patient at unacceptable risk for severe, irreversible toxicity. This review is based upon a consensus meeting and includes guidelines on pre-treatment screening, criteria for administration and withholding doses, and defines consensus criteria for safe administration and toxicity management. The somewhat heterogeneous best practices of 2014 will be compared and contrasted with the guidelines provided in 2001 and the package inserts from 1992 and 1998

    The Role of Mitochondria in the Activation/Maintenance of SOCE: Membrane Contact Sites as Signaling Hubs Sustaining Store-Operated Ca2+ Entry

    No full text
    Store-operated Ca2+ entry (SOCE) is a cell signaling pathway essential for immune and muscle function controlled by dynamic interactions between Ca2+-sensing STIM proteins on the endoplasmic reticulum (ER) and Ca2+-permeable ORAI channels on the plasma membrane (PM). STIM-ORAI interactions occur at membrane contact sites (MCS), evolutionarily conserved cellular structures characterized by the close apposition (10-20 nm) between the ER and target membranes that facilitate the exchange of lipids by non-vesicular transport mechanisms. STIM-ORAI interactions were considered to be restricted to ER-PM MCS, but recent evidence indicates that productive interactions take place between ER-bound STIM1 and Ca2+ channels located in intracellular organelles. Interactions between the ER and endosomes or lysosomes regulate the lipid homeostasis of these organelles and the propagation of Ca2+ signals initiated by the release of Ca2+ from acidic stores. Intracellular MCS also regulate the efficiency of phagocytosis, a fundamental cellular process essential for immunity and tissue homeostasis, by ensuring the coordinated opening of Ca2+ channels on phagocytic vacuoles and of Ca2+ release channels on juxtaposed ER stores. In this chapter, we review the current knowledge on the molecular composition and architecture of membrane contact sites that sustain Ca2+ signals at the plasma membrane and in intracellular organelles
    corecore