78 research outputs found

    Entropic Tension in Crowded Membranes

    Get PDF
    Unlike their model membrane counterparts, biological membranes are richly decorated with a heterogeneous assembly of membrane proteins. These proteins are so tightly packed that their excluded area interactions can alter the free energy landscape controlling the conformational transitions suffered by such proteins. For membrane channels, this effect can alter the critical membrane tension at which they undergo a transition from a closed to an open state, and therefore influence protein function \emph{in vivo}. Despite their obvious importance, crowding phenomena in membranes are much less well studied than in the cytoplasm. Using statistical mechanics results for hard disk liquids, we show that crowding induces an entropic tension in the membrane, which influences transitions that alter the projected area and circumference of a membrane protein. As a specific case study in this effect, we consider the impact of crowding on the gating properties of bacterial mechanosensitive membrane channels, which are thought to confer osmoprotection when these cells are subjected to osmotic shock. We find that crowding can alter the gating energies by more than 2  kBT2\;k_BT in physiological conditions, a substantial fraction of the total gating energies in some cases. Given the ubiquity of membrane crowding, the nonspecific nature of excluded volume interactions, and the fact that the function of many membrane proteins involve significant conformational changes, this specific case study highlights a general aspect in the function of membrane proteins.Comment: 20 pages (inclduing supporting information), 4 figures, to appear in PLoS Comp. Bio

    Differences in Efficacy and Safety of Pharmaceutical Treatments between Men and Women: An Umbrella Review

    Get PDF
    Being male or female is an important determinant of risks for certain diseases, patterns of illness and life expectancy. Although differences in risks for and prognoses of several diseases have been well documented, sex-based differences in responses to pharmaceutical treatments and accompanying risks of adverse events are less clear. The objective of this umbrella review was to determine whether clinically relevant differences in efficacy and safety of commonly prescribed medications exist between men and women. We retrieved all available systematic reviews of the Oregon Drug Effectiveness Review Project published before January 2010. Two persons independently reviewed each report to identify relevant studies. We dually abstracted data from the original publications into standardized forms. We synthesized the available evidence for each drug class and rated its quality applying the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Findings, based on 59 studies and data of more than 250,000 patients suggested that for the majority of drugs no substantial differences in efficacy and safety exist between men and women. Some clinically important exceptions, however, were apparent: women experienced substantially lower response rates with newer antiemetics than men (45% vs. 58%; relative risk 1.49, 95% confidence interval 1.35–1.64); men had higher rates of sexual dysfunction than women while on paroxetine for major depressive disorder; women discontinued lovastatin more frequently than men because of adverse events. Overall, for the majority of drugs sex does not appear to be a factor that has to be taken into consideration when choosing a drug treatment. The available body of evidence, however, was limited in quality and quantity, confining the range and certainty of our conclusions

    Limited duration of vaccine poliovirus and other enterovirus excretion among human immunodeficiency virus infected children in Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immunodeficient persons with persistent vaccine-related poliovirus infection may serve as a potential reservoir for reintroduction of polioviruses after wild poliovirus eradication, posing a risk of their further circulation in inadequately immunized populations.</p> <p>Methods</p> <p>To estimate the potential for vaccine-related poliovirus persistence among HIV-infected persons, we studied poliovirus excretion following vaccination among children at an orphanage in Kenya. For 12 months after national immunization days, we collected serial stool specimens from orphanage residents aged <5 years at enrollment and recorded their HIV status and demographic, clinical, immunological, and immunization data. To detect and characterize isolated polioviruses and non-polio enteroviruses (NPEV), we used viral culture, typing and intratypic differentiation of isolates by PCR, ELISA, and nucleic acid sequencing. Long-term persistence was defined as shedding for ≥ 6 months.</p> <p>Results</p> <p>Twenty-four children (15 HIV-infected, 9 HIV-uninfected) were enrolled, and 255 specimens (170 from HIV-infected, 85 from HIV-uninfected) were collected. All HIV-infected children had mildly or moderately symptomatic HIV-disease and moderate-to-severe immunosuppression. Fifteen participants shed vaccine-related polioviruses, and 22 shed NPEV at some point during the study period. Of 46 poliovirus-positive specimens, 31 were from HIV-infected, and 15 from HIV-uninfected children. No participant shed polioviruses for ≥ 6 months. Genomic sequencing of poliovirus isolates did not reveal any genetic evidence of long-term shedding. There was no long-term shedding of NPEV.</p> <p>Conclusion</p> <p>The results indicate that mildly to moderately symptomatic HIV-infected children retain the ability to clear enteroviruses, including vaccine-related poliovirus. Larger studies are needed to confirm and generalize these findings.</p

    Insulin Production and Signaling in Renal Tubules of Drosophila Is under Control of Tachykinin-Related Peptide and Regulates Stress Resistance

    Get PDF
    The insulin-signaling pathway is evolutionarily conserved in animals and regulates growth, reproduction, metabolic homeostasis, stress resistance and life span. In Drosophila seven insulin-like peptides (DILP1-7) are known, some of which are produced in the brain, others in fat body or intestine. Here we show that DILP5 is expressed in principal cells of the renal tubules of Drosophila and affects survival at stress. Renal (Malpighian) tubules regulate water and ion homeostasis, but also play roles in immune responses and oxidative stress. We investigated the control of DILP5 signaling in the renal tubules by Drosophila tachykinin peptide (DTK) and its receptor DTKR during desiccative, nutritional and oxidative stress. The DILP5 levels in principal cells of the tubules are affected by stress and manipulations of DTKR expression in the same cells. Targeted knockdown of DTKR, DILP5 and the insulin receptor dInR in principal cells or mutation of Dilp5 resulted in increased survival at either stress, whereas over-expression of these components produced the opposite phenotype. Thus, stress seems to induce hormonal release of DTK that acts on the renal tubules to regulate DILP5 signaling. Manipulations of S6 kinase and superoxide dismutase (SOD2) in principal cells also affect survival at stress, suggesting that DILP5 acts locally on tubules, possibly in oxidative stress regulation. Our findings are the first to demonstrate DILP signaling originating in the renal tubules and that this signaling is under control of stress-induced release of peptide hormone

    Structure of an Engineered β-Lactamase Maltose Binding Protein Fusion Protein: Insights into Heterotropic Allosteric Regulation

    Get PDF
    Engineering novel allostery into existing proteins is a challenging endeavor to obtain novel sensors, therapeutic proteins, or modulate metabolic and cellular processes. The RG13 protein achieves such allostery by inserting a circularly permuted TEM-1 β-lactamase gene into the maltose binding protein (MBP). RG13 is positively regulated by maltose yet is, serendipitously, inhibited by Zn2+ at low µM concentration. To probe the structure and allostery of RG13, we crystallized RG13 in the presence of mM Zn2+ concentration and determined its structure. The structure reveals that the MBP and TEM-1 domains are in close proximity connected via two linkers and a zinc ion bridging both domains. By bridging both TEM-1 and MBP, Zn2+ acts to “twist tie” the linkers thereby partially dislodging a linker between the two domains from its original catalytically productive position in TEM-1. This linker 1 contains residues normally part of the TEM-1 active site including the critical β3 and β4 strands important for activity. Mutagenesis of residues comprising the crystallographically observed Zn2+ site only slightly affected Zn2+ inhibition 2- to 4-fold. Combined with previous mutagenesis results we therefore hypothesize the presence of two or more inter-domain mutually exclusive inhibitory Zn2+ sites. Mutagenesis and molecular modeling of an intact TEM-1 domain near MBP within the RG13 framework indicated a close surface proximity of the two domains with maltose switching being critically dependent on MBP linker anchoring residues and linker length. Structural analysis indicated that the linker attachment sites on MBP are at a site that, upon maltose binding, harbors both the largest local Cα distance changes and displays surface curvature changes, from concave to relatively flat becoming thus less sterically intrusive. Maltose activation and zinc inhibition of RG13 are hypothesized to have opposite effects on productive relaxation of the TEM-1 β3 linker region via steric and/or linker juxtapositioning mechanisms

    <Book Reviews> Ingemar Fagerlind and Lawrence J Saha Education and National Development : A Comparative Perspective

    Get PDF
    textabstractVarious modeling methods have been proposed to estimate the potential predictive ability of polygenic risk variants that predispose to various common diseases. However, it is unknown whether differences between them affect their conclusions on predictive ability. We reviewed input parameters, assumptions and output of the five most common methods and compared their estimates of the area under the receiver operating characteristic (ROC) curve (AUC) using hypothetical data representing effect sizes and frequencies of genetic variants, population disease risk and number of variants. To assess the accuracy of the estimated AUCs, we aimed to reproduce the AUCs of published empirical studies. All methods assumed that the combined effect of genetic variants on disease risk followed a multiplicative risk model of independent genetic effects, but they either assumed per allele, per genotype or dominant/recessive effects for the genetic variants. Modeling strategy and input parameters differed. Methods used simulation analysis or analytical formulas with effect sizes quantified by odds ratios (ORs) or relative risks. Estimated AUC values were similar for lower ORs (0.7) due to variants with strong effects, differences in estimated AUCs between methods increased. The simulation methods accurately reproduced the AUC values of empirical studies, but the analytical methods did not. We conclude that despite differences in input parameters, the modeling methods estimate similar AUC for realistic values of the ORs. When one or more variants have stronger effects and AUC values are higher, the simulation methods tend to be more accurate

    Positive Feedback between Transcriptional and Kinase Suppression in Nematodes with Extraordinary Longevity and Stress Resistance

    Get PDF
    Insulin/IGF-1 signaling (IIS) regulates development and metabolism, and modulates aging, of Caenorhabditis elegans. In nematodes, as in mammals, IIS is understood to operate through a kinase-phosphorylation cascade that inactivates the DAF-16/FOXO transcription factor. Situated at the center of this pathway, phosphatidylinositol 3-kinase (PI3K) phosphorylates PIP2 to form PIP3, a phospholipid required for membrane tethering and activation of many signaling molecules. Nonsense mutants of age-1, the nematode gene encoding the class-I catalytic subunit of PI3K, produce only a truncated protein lacking the kinase domain, and yet confer 10-fold greater longevity on second-generation (F2) homozygotes, and comparable gains in stress resistance. Their F1 parents, like weaker age-1 mutants, are far less robust—implying that maternally contributed trace amounts of PI3K activity or of PIP3 block the extreme age-1 phenotypes. We find that F2-mutant adults have <10% of wild-type kinase activity in vitro and <60% of normal phosphoprotein levels in vivo. Inactivation of PI3K not only disrupts PIP3-dependent kinase signaling, but surprisingly also attenuates transcripts of numerous IIS components, even upstream of PI3K, and those of signaling molecules that cross-talk with IIS. The age-1(mg44) nonsense mutation results, in F2 adults, in changes to kinase profiles and to expression levels of multiple transcripts that distinguish this mutant from F1 age-1 homozygotes, a weaker age-1 mutant, or wild-type adults. Most but not all of those changes are reversed by a second mutation to daf-16, implicating both DAF-16/ FOXO–dependent and –independent mechanisms. RNAi, silencing genes that are downregulated in long-lived worms, improves oxidative-stress resistance of wild-type adults. It is therefore plausible that attenuation of those genes in age-1(mg44)-F2 adults contributes to their exceptional survival. IIS in nematodes (and presumably in other species) thus involves transcriptional as well as kinase regulation in a positive-feedback circuit, favoring either survival or reproduction. Hyperlongevity of strong age-1(mg44) mutants may result from their inability to reset this molecular switch to the reproductive mode

    Clinical practice guidelines for the management of hypothyroidism

    Full text link
    corecore