17 research outputs found

    Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient-specific data assimilation

    Get PDF
    Coronary artery bypass grafts (CABG) surgery is an invasive procedure performed to circumvent partial or complete blood flow blockage in coronary artery disease. In this work, we apply a numerical optimal flow control model to patient-specific geometries of CABG, reconstructed from clinical images of real-life surgical cases, in parameterized settings. The aim of these applications is to match known physiological data with numerical hemodynamics corresponding to different scenarios, arisen by tuning some parameters. Such applications are an initial step toward matching patient-specific physiological data in patient-specific vascular geometries as best as possible. Two critical challenges that reportedly arise in such problems are: (a) lack of robust quantification of meaningful boundary conditions required to match known data as best as possible and (b) high computational cost. In this work, we utilize unknown control variables in the optimal flow control problems to take care of the first challenge. Moreover, to address the second challenge, we propose a time-efficient and reliable computational environment for such parameterized problems by projecting them onto a low-dimensional solution manifold through proper orthogonal decomposition-Galerkin

    Piecewise polynomial approximation of probability density functions with application to uncertainty quantification for stochastic PDEs

    Full text link
    The probability density function (PDF) associated with a given set of samples is approximated by a piecewise-linear polynomial constructed with respect to a binning of the sample space. The kernel functions are a compactly supported basis for the space of such polynomials, i.e. finite element hat functions, that are centered at the bin nodes rather than at the samples, as is the case for the standard kernel density estimation approach. This feature naturally provides an approximation that is scalable with respect to the sample size. On the other hand, unlike other strategies that use a finite element approach, the proposed approximation does not require the solution of a linear system. In addition, a simple rule that relates the bin size to the sample size eliminates the need for bandwidth selection procedures. The proposed density estimator has unitary integral, does not require a constraint to enforce positivity, and is consistent. The proposed approach is validated through numerical examples in which samples are drawn from known PDFs. The approach is also used to determine approximations of (unknown) PDFs associated with outputs of interest that depend on the solution of a stochastic partial differential equation
    corecore