104 research outputs found

    Sutureless prepuceplasty with wound healing by second intention: An alternative surgical approach in children's phimosis treatment

    Get PDF
    Abstract Background A new technique for the treatment of children's phimosis is presented that minimizes the repairing time, the postoperative complications and maintains the physical foreskin appearance intact. Methods Eightyseven children with phimosis were treated with this new developed technique, between 2003 and 2005. Sutureless prepuceplasty creates a permanent surgical extension of the close prepuce. Stretching and retraction of phimotic foreskin reveals a tight prepuce ring that is cutting in its dorsal surface longitudinally. Rarely triple symmetric incisions in the preputial outlet are necessary. The foreskin is loose and moves absolutely free in bilateral courses. The wounds are healing by second intention. Antisepsis, steroids and Elicina cream, (which contains allantoin, collagen, elastin, glycolic acid and vitamins A, D, and E) should apply daily, for twenty to thirty days. Results The foreskin is moving in centripetal or efferent courses absolutely loosely, painlessly and bloodlessly. The mean time of follow-up was 27 months (one to four years). No complications were observed. Conclusion Sutureless prepuceplasty may present an acceptable alternative in children's phimosis reconstruction.</p

    International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed

    Spatial Stereoresolution for Depth Corrugations May Be Set in Primary Visual Cortex

    Get PDF
    Stereo “3D” depth perception requires the visual system to extract binocular disparities between the two eyes' images. Several current models of this process, based on the known physiology of primary visual cortex (V1), do this by computing a piecewise-frontoparallel local cross-correlation between the left and right eye's images. The size of the “window” within which detectors examine the local cross-correlation corresponds to the receptive field size of V1 neurons. This basic model has successfully captured many aspects of human depth perception. In particular, it accounts for the low human stereoresolution for sinusoidal depth corrugations, suggesting that the limit on stereoresolution may be set in primary visual cortex. An important feature of the model, reflecting a key property of V1 neurons, is that the initial disparity encoding is performed by detectors tuned to locally uniform patches of disparity. Such detectors respond better to square-wave depth corrugations, since these are locally flat, than to sinusoidal corrugations which are slanted almost everywhere. Consequently, for any given window size, current models predict better performance for square-wave disparity corrugations than for sine-wave corrugations at high amplitudes. We have recently shown that this prediction is not borne out: humans perform no better with square-wave than with sine-wave corrugations, even at high amplitudes. The failure of this prediction raised the question of whether stereoresolution may actually be set at later stages of cortical processing, perhaps involving neurons tuned to disparity slant or curvature. Here we extend the local cross-correlation model to include existing physiological and psychophysical evidence indicating that larger disparities are detected by neurons with larger receptive fields (a size/disparity correlation). We show that this simple modification succeeds in reconciling the model with human results, confirming that stereoresolution for disparity gratings may indeed be limited by the size of receptive fields in primary visual cortex

    First- and second-order contributions to depth perception in anti-correlated random dot stereograms.

    Get PDF
    The binocular energy model of neural responses predicts that depth from binocular disparity might be perceived in the reversed direction when the contrast of dots presented to one eye is reversed. While reversed-depth has been found using anti-correlated random-dot stereograms (ACRDS) the findings are inconsistent across studies. The mixed findings may be accounted for by the presence of a gap between the target and surround, or as a result of overlap of dots around the vertical edges of the stimuli. To test this, we assessed whether (1) the gap size (0, 19.2 or 38.4 arc min) (2) the correlation of dots or (3) the border orientation (circular target, or horizontal or vertical edge) affected the perception of depth. Reversed-depth from ACRDS (circular no-gap condition) was seen by a minority of participants, but this effect reduced as the gap size increased. Depth was mostly perceived in the correct direction for ACRDS edge stimuli, with the effect increasing with the gap size. The inconsistency across conditions can be accounted for by the relative reliability of first- and second-order depth detection mechanisms, and the coarse spatial resolution of the latter

    Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding

    Get PDF
    We fabricated nanowires of a conjugated oligomer and applied them to organic field-effect transistors (OFETs). The supramolecular assemblies of a thienoisoindigo-based small molecular organic semiconductor (TIIG-Bz) were prepared by co-precipitation with 2-bromobenzaldehyde (2-BBA) via a combination of halogen bonding (XB) between the bromide in 2-BBA and electron-donor groups in TIIG-Bz, and chalcogen bonding (CB) between the aldehyde in 2-BBA and sulfur in TIIG-Bz. It was found that 2-BBA could be incorporated into the conjugated planes of TIIG-Bz via XB and CB pairs, thereby increasing the pi - pi stacking area between the conjugated planes. As a result, the driving force for one-dimensional growth of the supramolecular assemblies via pi - pi stacking was significantly enhanced. TIIG-Bz/2-BBA nanowires were used to fabricate OFETs, showing significantly enhanced charge transfer mobility compared to OFETs based on pure TIIG-Bz thin films and nanowires, which demonstrates the benefit of nanowire fabrication using 2-BB

    Vertical Binocular Disparity is Encoded Implicitly within a Model Neuronal Population Tuned to Horizontal Disparity and Orientation

    Get PDF
    Primary visual cortex is often viewed as a “cyclopean retina”, performing the initial encoding of binocular disparities between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response to different two-dimensional (2D) disparities, are elongated along the cell's preferred orientation. Because of this, even if a neuron's optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the most commonly-occurring situations

    Outcomes of COVID-19 in patients with primary systemic vasculitis or polymyalgia rheumatica from the COVID-19 Global Rheumatology Alliance physician registry: a retrospective cohort study

    Get PDF
    BACKGROUND: Patients with primary systemic vasculitis or polymyalgia rheumatica might be at a high risk for poor COVID-19 outcomes due to the treatments used, the potential organ damage cause by primary systemic vasculitis, and the demographic factors associated with these conditions. We therefore aimed to investigate factors associated with COVID-19 outcomes in patients with primary systemic vasculitis or polymyalgia rheumatica. METHODS: In this retrospective cohort study, adult patients (aged ≥18 years) diagnosed with COVID-19 between March 12, 2020, and April 12, 2021, who had a history of primary systemic vasculitis (antineutrophil cytoplasmic antibody [ANCA]-associated vasculitis, giant cell arteritis, Behçet's syndrome, or other vasculitis) or polymyalgia rheumatica, and were reported to the COVID-19 Global Rheumatology Alliance registry were included. To assess COVID-19 outcomes in patients, we used an ordinal COVID-19 severity scale, defined as: (1) no hospitalisation; (2) hospitalisation without supplemental oxygen; (3) hospitalisation with any supplemental oxygen or ventilation; or (4) death. Multivariable ordinal logistic regression analyses were used to estimate odds ratios (ORs), adjusting for age, sex, time period, number of comorbidities, smoking status, obesity, glucocorticoid use, disease activity, region, and medication category. Analyses were also stratified by type of rheumatic disease. FINDINGS: Of 1202 eligible patients identified in the registry, 733 (61·0%) were women and 469 (39·0%) were men, and their mean age was 63·8 years (SD 17·1). A total of 374 (31·1%) patients had polymyalgia rheumatica, 353 (29·4%) had ANCA-associated vasculitis, 183 (15·2%) had giant cell arteritis, 112 (9·3%) had Behçet's syndrome, and 180 (15·0%) had other vasculitis. Of 1020 (84·9%) patients with outcome data, 512 (50·2%) were not hospitalised, 114 (11·2%) were hospitalised and did not receive supplemental oxygen, 239 (23·4%) were hospitalised and received ventilation or supplemental oxygen, and 155 (15·2%) died. A higher odds of poor COVID-19 outcomes were observed in patients who were older (per each additional decade of life OR 1·44 [95% CI 1·31–1·57]), were male compared with female (1·38 [1·05–1·80]), had more comorbidities (per each additional comorbidity 1·39 [1·23–1·58]), were taking 10 mg/day or more of prednisolone compared with none (2·14 [1·50–3·04]), or had moderate, or high or severe disease activity compared with those who had disease remission or low disease activity (2·12 [1·49–3·02]). Risk factors varied among different disease subtypes. INTERPRETATION: Among patients with primary systemic vasculitis and polymyalgia rheumatica, severe COVID-19 outcomes were associated with variable and largely unmodifiable risk factors, such as age, sex, and number of comorbidities, as well as treatments, including high-dose glucocorticoids. Our results could be used to inform mitigation strategies for patients with these diseases. FUNDING: American College of Rheumatology and the European Alliance of Associations for Rheumatology

    Phenotypic and genotypic diversity of wine yeasts used for acidic musts

    Get PDF
    The aim of this study was to examine the physiological and genetic stability of the industrial wine yeasts Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum under acidic stress during fermentation. The yeasts were sub-cultured in aerobic or fermentative conditions in media with or without l-malic acid. Changes in the biochemical profiles, karyotypes, and mitochondrial DNA profiles were assessed after minimum 50 generations. All yeast segregates showed a tendency to increase the range of compounds used as sole carbon sources. The wild strains and their segregates were aneuploidal or diploidal. One of the four strains of S. cerevisiae did not reveal any changes in the electrophoretic profiles of chromosomal and mitochondrial DNA, irrespective of culture conditions. The extent of genomic changes in the other yeasts was strain-dependent. In the karyotypes of the segregates, the loss of up to 2 and the appearance up to 3 bands was noted. The changes in their mtDNA patterns were much broader, reaching 5 missing and 10 additional bands. The only exception was S. bayanus var. uvarum Y.00779, characterized by significantly greater genome plasticity only under fermentative stress. Changes in karyotypes and mtDNA profiles prove that fermentative stress is the main driving force of the adaptive evolution of the yeasts. l-malic acid does not influence the extent of genomic changes and the resistance of wine yeasts exhibiting increased demalication activity to acidic stress is rather related to their ability to decompose this acid. The phenotypic changes in segregates, which were found even in yeasts that did not reveal deviations in their DNA profiles, show that phenotypic characterization may be misleading in wine yeast identification. Because of yeast gross genomic diversity, karyotyping even though it does not seem to be a good discriminative tool, can be useful in determining the stability of wine yeasts. Restriction analysis of mitochondrial DNA appears to be a more sensitive method allowing for an early detection of genotypic changes in yeasts. Thus, if both of these methods are applied, it is possible to conduct the quick routine assessment of wine yeast stability in pure culture collections depositing industrial strains

    Can we prevent or treat multiple sclerosis by individualised vitamin D supply?

    Get PDF
    Apart from its principal role in bone metabolism and calcium homeostasis, vitamin D has been attributed additional effects including an immunomodulatory, anti-inflammatory, and possibly even neuroprotective capacity which implicates a possible role of vitamin D in autoimmune diseases like multiple sclerosis (MS). Indeed, several lines of evidence including epidemiologic, preclinical, and clinical data suggest that reduced vitamin D levels and/or dysregulation of vitamin D homeostasis is a risk factor for the development of multiple sclerosis on the one hand, and that vitamin D serum levels are inversely associated with disease activity and progression on the other hand. However, these data are not undisputable, and many questions regarding the preventive and therapeutic capacity of vitamin D in multiple sclerosis remain to be answered. In particular, available clinical data derived from interventional trials using vitamin D supplementation as a therapeutic approach in MS are inconclusive and partly contradictory. In this review, we summarise and critically evaluate the existing data on the possible link between vitamin D and multiple sclerosis in light of the crucial question whether optimization of vitamin D status may impact the risk and/or the course of multiple sclerosis
    corecore